Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Symmetries of finite Heisenberg groups for multipartite systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00064344" target="_blank" >RIV/00216224:14310/12:00064344 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21340/12:00197439

  • Výsledek na webu

    <a href="http://iopscience.iop.org/1751-8121/45/28/285305/" target="_blank" >http://iopscience.iop.org/1751-8121/45/28/285305/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1751-8113/45/28/285305" target="_blank" >10.1088/1751-8113/45/28/285305</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Symmetries of finite Heisenberg groups for multipartite systems

  • Popis výsledku v původním jazyce

    A composite quantum system comprising a finite number k of subsystems which are described with position and momentum variables in Z_{n_i}, i = 1, ... , k, is considered. Its Hilbert space is given by a k-fold tensor product of Hilbert spaces of dimensions n_1, ... , n_k. The symmetry group of the respective finite Heisenberg group is given by the quotient group of certain normalizer. This paper extends our previous investigation of bipartite quantum systems to arbitrary multipartite systems of the abovetype. It provides detailed description of the normalizers and the corresponding symmetry groups. The new class of symmetry groups represents a very specific generalization of symplectic groups over modular rings. As an application, a new proof of existence of the maximal set of mutually unbiased bases in Hilbert spaces of prime power dimensions is provided.

  • Název v anglickém jazyce

    Symmetries of finite Heisenberg groups for multipartite systems

  • Popis výsledku anglicky

    A composite quantum system comprising a finite number k of subsystems which are described with position and momentum variables in Z_{n_i}, i = 1, ... , k, is considered. Its Hilbert space is given by a k-fold tensor product of Hilbert spaces of dimensions n_1, ... , n_k. The symmetry group of the respective finite Heisenberg group is given by the quotient group of certain normalizer. This paper extends our previous investigation of bipartite quantum systems to arbitrary multipartite systems of the abovetype. It provides detailed description of the normalizers and the corresponding symmetry groups. The new class of symmetry groups represents a very specific generalization of symplectic groups over modular rings. As an application, a new proof of existence of the maximal set of mutually unbiased bases in Hilbert spaces of prime power dimensions is provided.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BE - Teoretická fyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physics A: Mathematical and Theoretical

  • ISSN

    1751-8113

  • e-ISSN

  • Svazek periodika

    45

  • Číslo periodika v rámci svazku

    28

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

    "285305"-"1"-"285305"-"18"

  • Kód UT WoS článku

    000306117200011

  • EID výsledku v databázi Scopus