Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Normal Forms and Symmetries of Real Hypersurfaces of Finite Type in C-2

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00067030" target="_blank" >RIV/00216224:14310/13:00067030 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Normal Forms and Symmetries of Real Hypersurfaces of Finite Type in C-2

  • Popis výsledku v původním jazyce

    We give a complete description of normal forms for real hypersurfaces of finite type in C-2 with respect to their holomorphic symmetry algebras. The normal forms include refined versions of the constructions by Chern-Moser, Stanton, Kolar. We use the method of simultaneous normalisation of the equations and symmetries that goes back to Lie and Cartan. Our approach leads to a unique canonical equation of the hypersurface for every type of its symmetry algebra. Moreover, even in the Levi-degenerate case,our construction implies convergence of the transformation to the normal form if the dimension of the symmetry algebra is at least two. We illustrate our results by explicitly normalising Cartan's homogeneous hypersurfaces and their automorphisms.

  • Název v anglickém jazyce

    Normal Forms and Symmetries of Real Hypersurfaces of Finite Type in C-2

  • Popis výsledku anglicky

    We give a complete description of normal forms for real hypersurfaces of finite type in C-2 with respect to their holomorphic symmetry algebras. The normal forms include refined versions of the constructions by Chern-Moser, Stanton, Kolar. We use the method of simultaneous normalisation of the equations and symmetries that goes back to Lie and Cartan. Our approach leads to a unique canonical equation of the hypersurface for every type of its symmetry algebra. Moreover, even in the Levi-degenerate case,our construction implies convergence of the transformation to the normal form if the dimension of the symmetry algebra is at least two. We illustrate our results by explicitly normalising Cartan's homogeneous hypersurfaces and their automorphisms.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F08%2F0397" target="_blank" >GA201/08/0397: Algebraické metody v geometrii a topologii</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    INDIANA UNIVERSITY MATHEMATICS JOURNAL

  • ISSN

    0022-2518

  • e-ISSN

  • Svazek periodika

    62

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    32

  • Strana od-do

    1-32

  • Kód UT WoS článku

    000329473200001

  • EID výsledku v databázi Scopus