Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Weyl-Titchmarsh theory for discrete symplectic systems with general linear dependence on spectral parameter

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00073404" target="_blank" >RIV/00216224:14310/14:00073404 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1080/10236198.2013.813496" target="_blank" >http://dx.doi.org/10.1080/10236198.2013.813496</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/10236198.2013.813496" target="_blank" >10.1080/10236198.2013.813496</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Weyl-Titchmarsh theory for discrete symplectic systems with general linear dependence on spectral parameter

  • Popis výsledku v původním jazyce

    In this paper we develop the Weyl-Titchmarsh theory for discrete symplectic systems with general linear dependence on the spectral parameter. We generalize and complete several recent results concerning these systems, which have the spectral parameter only in the second equation. Our new theory includes characterizations of the Weyl disks and Weyl circles, their limiting behavior, properties of square summable solutions including the analysis of the exact number of linearly independent square summable solutions, and limit point/circle criteria. Some illustrative examples are also provided.

  • Název v anglickém jazyce

    Weyl-Titchmarsh theory for discrete symplectic systems with general linear dependence on spectral parameter

  • Popis výsledku anglicky

    In this paper we develop the Weyl-Titchmarsh theory for discrete symplectic systems with general linear dependence on the spectral parameter. We generalize and complete several recent results concerning these systems, which have the spectral parameter only in the second equation. Our new theory includes characterizations of the Weyl disks and Weyl circles, their limiting behavior, properties of square summable solutions including the analysis of the exact number of linearly independent square summable solutions, and limit point/circle criteria. Some illustrative examples are also provided.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Difference Equations and Applications

  • ISSN

    1023-6198

  • e-ISSN

  • Svazek periodika

    20

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    34

  • Strana od-do

    84-117

  • Kód UT WoS článku

    000331806200006

  • EID výsledku v databázi Scopus