Second order symmetries of the conformal laplacian and R-separation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00116104" target="_blank" >RIV/00216224:14310/15:00116104 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1742-6596/597/1/012058" target="_blank" >https://iopscience.iop.org/article/10.1088/1742-6596/597/1/012058</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/597/1/012058" target="_blank" >10.1088/1742-6596/597/1/012058</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Second order symmetries of the conformal laplacian and R-separation
Popis výsledku v původním jazyce
Let (M, g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3, let Delta := del(a)g(ab)del(b) be the Laplace-Beltrami operator and let Delta(Y) be the conformal Laplacian. In some references, Kalnins and Miller provide an intrinsic characterization for R-separation of the Laplace equation Delta Psi = 0 in terms of second order conformal symmetries of Delta. The main goal of this paper is to generalize this result and to explain how the (resp. conformal) symmetries of Delta(Y) + V (where V is an arbitrary potential) can be used to characterize the R-separation of the Schrodinger equation (Delta(Y) + V)Psi = E Psi (resp. the Schrodinger equation at zero energy (Delta(Y) + V)Psi = 0). Using a result exposed in our previous paper, we obtain characterizations of the R-separation of the equations Delta(Y) Psi = 0 and Delta(Y) Psi = E Psi uniquely in terms of (conformal) Killing tensors pertaining to (conformal) Killing-Stackel algebras.
Název v anglickém jazyce
Second order symmetries of the conformal laplacian and R-separation
Popis výsledku anglicky
Let (M, g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3, let Delta := del(a)g(ab)del(b) be the Laplace-Beltrami operator and let Delta(Y) be the conformal Laplacian. In some references, Kalnins and Miller provide an intrinsic characterization for R-separation of the Laplace equation Delta Psi = 0 in terms of second order conformal symmetries of Delta. The main goal of this paper is to generalize this result and to explain how the (resp. conformal) symmetries of Delta(Y) + V (where V is an arbitrary potential) can be used to characterize the R-separation of the Schrodinger equation (Delta(Y) + V)Psi = E Psi (resp. the Schrodinger equation at zero energy (Delta(Y) + V)Psi = 0). Using a result exposed in our previous paper, we obtain characterizations of the R-separation of the equations Delta(Y) Psi = 0 and Delta(Y) Psi = E Psi uniquely in terms of (conformal) Killing tensors pertaining to (conformal) Killing-Stackel algebras.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
XXXTH INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (ICGTMP) (GROUP30)
ISBN
—
ISSN
1742-6588
e-ISSN
—
Počet stran výsledku
11
Strana od-do
1-11
Název nakladatele
IOP PUBLISHING LTD
Místo vydání
BRISTOL
Místo konání akce
Ghent, BELGIUM
Datum konání akce
14. 7. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000354929400058