Sufficiency and sensitivity for nonlinear optimal control problems on time scales via coercivity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00100737" target="_blank" >RIV/00216224:14310/18:00100737 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1051/cocv/2017070" target="_blank" >http://dx.doi.org/10.1051/cocv/2017070</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/cocv/2017070" target="_blank" >10.1051/cocv/2017070</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sufficiency and sensitivity for nonlinear optimal control problems on time scales via coercivity
Popis výsledku v původním jazyce
The main focus of this paper is to develop a sufficiency criterion for optimality in nonlinear optimal control problems defined on time scales. In particular, it is shown that the coercivity of the second variation together with the controllability of the linearized dynamic system are sufficient for the weak local minimality. The method employed is based on a direct approach using the structure of this optimal control problem. The second aim pertains to the sensitivity analysis for parametric control problems defined on time scales with separately varying state endpoints. Assuming a slight strengthening of the sufficiency criterion at a base value of the parameter, the perturbed problem is shown to have a weak local minimum and the corresponding multipliers are shown to be continuously differentiable with respect to the parameter. A link is established between (i) a modification of the shooting method for solving the associated boundary value problem, and (ii) the sufficient conditions involving the coercivity of the accessory problem, as opposed to the Riccati equation, which is also used for this task. This link is new even for the continuous time setting.
Název v anglickém jazyce
Sufficiency and sensitivity for nonlinear optimal control problems on time scales via coercivity
Popis výsledku anglicky
The main focus of this paper is to develop a sufficiency criterion for optimality in nonlinear optimal control problems defined on time scales. In particular, it is shown that the coercivity of the second variation together with the controllability of the linearized dynamic system are sufficient for the weak local minimality. The method employed is based on a direct approach using the structure of this optimal control problem. The second aim pertains to the sensitivity analysis for parametric control problems defined on time scales with separately varying state endpoints. Assuming a slight strengthening of the sufficiency criterion at a base value of the parameter, the perturbed problem is shown to have a weak local minimum and the corresponding multipliers are shown to be continuously differentiable with respect to the parameter. A link is established between (i) a modification of the shooting method for solving the associated boundary value problem, and (ii) the sufficient conditions involving the coercivity of the accessory problem, as opposed to the Riccati equation, which is also used for this task. This link is new even for the continuous time setting.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonovské a symplektické systémy: oscilační a spektrální teorie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ESAIM: Control, Optimisation and Calculus of Variations
ISSN
1292-8119
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
30
Strana od-do
1705-1734
Kód UT WoS článku
000461018200017
EID výsledku v databázi Scopus
—