The generalized rank of trace languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00107334" target="_blank" >RIV/00216224:14310/19:00107334 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/10.1142/S0129054119400070" target="_blank" >https://www.worldscientific.com/doi/10.1142/S0129054119400070</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129054119400070" target="_blank" >10.1142/S0129054119400070</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The generalized rank of trace languages
Popis výsledku v původním jazyce
Given a partially commutative alphabet and a set of words L, the rank of L expresses the amount of shuffling required to produce a word belonging to L from two words whose concatenation belongs to the closure of L with respect to the partial commutation. In this paper, the notion of rank is generalized from concatenations of two words to an arbitrary fixed number of words. In this way, an infinite sequence of non-negative integers and infinity is assigned to every set of words. It is proved that in the case of alphabets defining free commutative monoids, as well as in the more general case of direct products of free monoids, sequences of ranks of regular sets are exactly non-decreasing sequences that are eventually constant. On the other hand, by uncovering a relationship between rank sequences of regular sets and rational series over the min-plus semiring, it is shown that already for alphabets defining free products of free commutative monoids, rank sequences need not be eventually periodic.
Název v anglickém jazyce
The generalized rank of trace languages
Popis výsledku anglicky
Given a partially commutative alphabet and a set of words L, the rank of L expresses the amount of shuffling required to produce a word belonging to L from two words whose concatenation belongs to the closure of L with respect to the partial commutation. In this paper, the notion of rank is generalized from concatenations of two words to an arbitrary fixed number of words. In this way, an infinite sequence of non-negative integers and infinity is assigned to every set of words. It is proved that in the case of alphabets defining free commutative monoids, as well as in the more general case of direct products of free monoids, sequences of ranks of regular sets are exactly non-decreasing sequences that are eventually constant. On the other hand, by uncovering a relationship between rank sequences of regular sets and rational series over the min-plus semiring, it is shown that already for alphabets defining free products of free commutative monoids, rank sequences need not be eventually periodic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-02862S" target="_blank" >GA15-02862S: Aplikace algebry a kombinatoriky v teorii formálních jazyků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Foundations of Computer Science
ISSN
0129-0541
e-ISSN
1793-6373
Svazek periodika
30
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
35
Strana od-do
135-169
Kód UT WoS článku
000460314500008
EID výsledku v databázi Scopus
2-s2.0-85062513658