Spoke behaviour in reactive HiPIMS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00108113" target="_blank" >RIV/00216224:14310/19:00108113 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spoke behaviour in reactive HiPIMS
Popis výsledku v původním jazyce
Plasma in high-power impulse magnetron sputtering (HiPIMS) discharge, similarly to other discharges utilizing ExB field (Hall thrusters, homopolar devices), undergoes self-organization into the ionization zones rotating in the ExB direction, called spokes [1]. Many studies were conducted focusing on the characterization of their appearance, number, rotational velocity, merging and splitting events in different experimental conditions. Nevertheless, only very little research was conducted in the case of reactive sputtering, where only general spoke characteristics were evaluated [2]. A dual-image fast camera screening was utilized to capture plasma emission on 3” Nb target in a reactive mixture of nitrogen and argon. Spoke characteristics were evaluated while overall pressure and supplied power was kept constant and the ratio of N2/Ar was varied. The shape, velocity and spoke number were significantly affected by higher ratio of N2 in the mixture. To distinguish between the effects of the poisoned target and reactive gas present in the plasma on spokes, plasma emission was screened as the Nb target was cleaned in pure Ar atmosphere. Additionally, obtained spoke characteristics were compared to those made on a fully compound NbN target. [1] A. Hecimovic A, A von Keudell, Journal of Physics D: Applied Physics 51 (2018) 453001 [2] A. Hecimovic, C. Corbella, C. Maszl, W. Breilmann, A. and von Keudell, Journal of Applied Physics 121 (2017) 171915
Název v anglickém jazyce
Spoke behaviour in reactive HiPIMS
Popis výsledku anglicky
Plasma in high-power impulse magnetron sputtering (HiPIMS) discharge, similarly to other discharges utilizing ExB field (Hall thrusters, homopolar devices), undergoes self-organization into the ionization zones rotating in the ExB direction, called spokes [1]. Many studies were conducted focusing on the characterization of their appearance, number, rotational velocity, merging and splitting events in different experimental conditions. Nevertheless, only very little research was conducted in the case of reactive sputtering, where only general spoke characteristics were evaluated [2]. A dual-image fast camera screening was utilized to capture plasma emission on 3” Nb target in a reactive mixture of nitrogen and argon. Spoke characteristics were evaluated while overall pressure and supplied power was kept constant and the ratio of N2/Ar was varied. The shape, velocity and spoke number were significantly affected by higher ratio of N2 in the mixture. To distinguish between the effects of the poisoned target and reactive gas present in the plasma on spokes, plasma emission was screened as the Nb target was cleaned in pure Ar atmosphere. Additionally, obtained spoke characteristics were compared to those made on a fully compound NbN target. [1] A. Hecimovic A, A von Keudell, Journal of Physics D: Applied Physics 51 (2018) 453001 [2] A. Hecimovic, C. Corbella, C. Maszl, W. Breilmann, A. and von Keudell, Journal of Applied Physics 121 (2017) 171915
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů