Evaluating climatic threats to habitat types based on co-occurrence patterns of characteristic species
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00113232" target="_blank" >RIV/00216224:14310/19:00113232 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.baae.2019.06.002" target="_blank" >http://dx.doi.org/10.1016/j.baae.2019.06.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.baae.2019.06.002" target="_blank" >10.1016/j.baae.2019.06.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating climatic threats to habitat types based on co-occurrence patterns of characteristic species
Popis výsledku v původním jazyce
Species distribution models (SDMs) are used to project how suitable ranges of species shift under a warming climate. Conservation management, however, commonly targets habitat types rather than individual species. Such habitat types are often defined by the co-occurrence of a set of characteristic species. Here, we develop a co-occurrence-based index (CRI); which measures how the representation of habitat types in a particular area may change in a future climate. The index is based on stacking projections of distribution models of characteristic species and accounts for changes both in potential range size of each species individually and in spatial range overlap among characteristic species, i.e. co-occurrence patterns. We illustrate the approach by modelling the changing representation of 68 habitat types in Austria under two different climate scenarios. We base index calculations on SDM projections under either the assumption of unrestricted mobility ('full-dispersal') or of complete immobility ('no-dispersal') of individual species. Moreover, we compare results to those achieved with a simpler occurrence-based index (OI); which only accounts for change in specie's range sizes. All three alternative index calculations suggest that most modelled habitat types will lose area (in particular mires, wetlands and siliceous alpine grasslands) and only a minority will profit from a warming climate (in particular forests of dry and warm sites). 'Full-dispersal' CRI and OI are closely, but not perfectly correlated. Importantly, for more than half of the habitat types, accounting for changing co-occurrence patterns amplifies projected losses. The 'no-dispersal' CRI (CRInd) delivers the most alarming projections, indicating considerable spatial turn-over of sites suitable to the habitat types. Taken together, our results suggest that modelling re-distribution of habitat types which are defined by species combinations needs to account for modifications of co-occurrence patterns. Moreover, conservation should acknowledge that novel combinations of species will likely emerge under a warming climate. (C) 2019 Published by Elsevier GmbH on behalf of Gesellschaft fur Okologie.
Název v anglickém jazyce
Evaluating climatic threats to habitat types based on co-occurrence patterns of characteristic species
Popis výsledku anglicky
Species distribution models (SDMs) are used to project how suitable ranges of species shift under a warming climate. Conservation management, however, commonly targets habitat types rather than individual species. Such habitat types are often defined by the co-occurrence of a set of characteristic species. Here, we develop a co-occurrence-based index (CRI); which measures how the representation of habitat types in a particular area may change in a future climate. The index is based on stacking projections of distribution models of characteristic species and accounts for changes both in potential range size of each species individually and in spatial range overlap among characteristic species, i.e. co-occurrence patterns. We illustrate the approach by modelling the changing representation of 68 habitat types in Austria under two different climate scenarios. We base index calculations on SDM projections under either the assumption of unrestricted mobility ('full-dispersal') or of complete immobility ('no-dispersal') of individual species. Moreover, we compare results to those achieved with a simpler occurrence-based index (OI); which only accounts for change in specie's range sizes. All three alternative index calculations suggest that most modelled habitat types will lose area (in particular mires, wetlands and siliceous alpine grasslands) and only a minority will profit from a warming climate (in particular forests of dry and warm sites). 'Full-dispersal' CRI and OI are closely, but not perfectly correlated. Importantly, for more than half of the habitat types, accounting for changing co-occurrence patterns amplifies projected losses. The 'no-dispersal' CRI (CRInd) delivers the most alarming projections, indicating considerable spatial turn-over of sites suitable to the habitat types. Taken together, our results suggest that modelling re-distribution of habitat types which are defined by species combinations needs to account for modifications of co-occurrence patterns. Moreover, conservation should acknowledge that novel combinations of species will likely emerge under a warming climate. (C) 2019 Published by Elsevier GmbH on behalf of Gesellschaft fur Okologie.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Basic and Applied Ecology
ISSN
1439-1791
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
AUG
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
23-35
Kód UT WoS článku
000481411900003
EID výsledku v databázi Scopus
2-s2.0-85068031794