A novel method for classification of wine based on organic acids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00113328" target="_blank" >RIV/00216224:14310/19:00113328 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0308814619301815" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0308814619301815</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.foodchem.2019.01.113" target="_blank" >10.1016/j.foodchem.2019.01.113</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel method for classification of wine based on organic acids
Popis výsledku v původním jazyce
Bio-electronic tongue was linked to artificial intelligence processing unit and used for classification of wines based on carboxylic acids levels, which were indirectly related to malolactic fermentation. The system employed amperometric biosensors with lactate oxidase, sarcosine oxidase, and fumarase/sarcosine oxidase in the three sensing channels. The results were processed using two statistical methods – principal component analysis (PCA) and self-organized maps (SOM) in order to classify 31 wine samples from the South Moravia region in the Czech Republic. Reference assays were carried out using the capillary electrophoresis (CE). The PCA patterns for both CE and biosensor data provided good correspondence in the clusters of samples. The SOM treatment provided a better resolution of the generated patterns of samples compared to PCA, the SOM derived clusters corresponded with the PCA classification only partially. The biosensor/SOM combination offers a novel procedure of wine classification.
Název v anglickém jazyce
A novel method for classification of wine based on organic acids
Popis výsledku anglicky
Bio-electronic tongue was linked to artificial intelligence processing unit and used for classification of wines based on carboxylic acids levels, which were indirectly related to malolactic fermentation. The system employed amperometric biosensors with lactate oxidase, sarcosine oxidase, and fumarase/sarcosine oxidase in the three sensing channels. The results were processed using two statistical methods – principal component analysis (PCA) and self-organized maps (SOM) in order to classify 31 wine samples from the South Moravia region in the Czech Republic. Reference assays were carried out using the capillary electrophoresis (CE). The PCA patterns for both CE and biosensor data provided good correspondence in the clusters of samples. The SOM treatment provided a better resolution of the generated patterns of samples compared to PCA, the SOM derived clusters corresponded with the PCA classification only partially. The biosensor/SOM combination offers a novel procedure of wine classification.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Food Chemistry
ISSN
0308-8146
e-ISSN
—
Svazek periodika
284
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
296-302
Kód UT WoS článku
000458119700038
EID výsledku v databázi Scopus
2-s2.0-85060937630