Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Almost analytic extensions of ultradifferentiable functions with applications to microlocal analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114510" target="_blank" >RIV/00216224:14310/20:00114510 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jmaa.2019.123451" target="_blank" >https://doi.org/10.1016/j.jmaa.2019.123451</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2019.123451" target="_blank" >10.1016/j.jmaa.2019.123451</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Almost analytic extensions of ultradifferentiable functions with applications to microlocal analysis

  • Popis výsledku v původním jazyce

    We review and extend the description of ultradifferentiable functions by their almost analytic extensions, i.e., extensions to the complex domain with specific vanishing rate of the (partial derivative) over bar -derivative near the real domain. We work in a general uniform framework which comprises the main classical ultradifferentiable classes but also allows to treat unions and intersections of such. The second part of the paper is devoted to applications in microlocal analysis. The ultradifferentiable wave front set is defined in this general setting and characterized in terms of almost analytic extensions and of the FBI transform. This allows to extend its definition to ultradifferentiable manifolds. We also discuss ultradifferentiable versions of the elliptic regularity theorem and obtain a general quasianalytic Holmgren uniqueness theorem. (C) 2019 Elsevier Inc. All rights reserved.

  • Název v anglickém jazyce

    Almost analytic extensions of ultradifferentiable functions with applications to microlocal analysis

  • Popis výsledku anglicky

    We review and extend the description of ultradifferentiable functions by their almost analytic extensions, i.e., extensions to the complex domain with specific vanishing rate of the (partial derivative) over bar -derivative near the real domain. We work in a general uniform framework which comprises the main classical ultradifferentiable classes but also allows to treat unions and intersections of such. The second part of the paper is devoted to applications in microlocal analysis. The ultradifferentiable wave front set is defined in this general setting and characterized in terms of almost analytic extensions and of the FBI transform. This allows to extend its definition to ultradifferentiable manifolds. We also discuss ultradifferentiable versions of the elliptic regularity theorem and obtain a general quasianalytic Holmgren uniqueness theorem. (C) 2019 Elsevier Inc. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-19437S" target="_blank" >GA17-19437S: Klasifikační problémy pro reálné nadplochy v komplexním prostoru</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

    1096-0813

  • Svazek periodika

    481

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    51

  • Strana od-do

    1-51

  • Kód UT WoS článku

    000488889600001

  • EID výsledku v databázi Scopus

    2-s2.0-85071955077