Lax Familial Representability and Lax Generic Factorizations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00117741" target="_blank" >RIV/00216224:14310/20:00117741 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.tac.mta.ca/tac/volumes/35/37/35-37.pdf" target="_blank" >http://www.tac.mta.ca/tac/volumes/35/37/35-37.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lax Familial Representability and Lax Generic Factorizations
Popis výsledku v původním jazyce
A classical result due to Diers shows that a copresheaf F: A -> Set on a category A is a coproduct of representables precisely when each connected component of F's category of elements has an initial object. Most often, this condition is imposed on a copresheaf of the form B (X, T-) for a functor T : A -> B, in which case this property says that T admits generic factorizations at X, or equivalently that T is familial at X. A classical result due to Diers shows that a copresheaf F: A -> Set on a category A is a coproduct of representables precisely when each connected component of F's category of elements has an initial object. Most often, this condition is imposed on a copresheaf of the form B (X, T-) for a functor T : A -> B, in which case this property says that T admits generic factorizations at X, or equivalently that T is familial at X. Here we generalize these results to the two-dimensional setting, replacing A with an arbitrary bicategory A, and Set with Cat. In this two-dimensional setting, simply asking that a pseudofunctor F: A -> Cat be a coproduct of representables is often too strong of a condition. Instead, we will only ask that F be a lax conical colimit of representables. This in turn allows for the weaker notion of lax generic factorizations (and lax familial representability) for pseudofunctors of bicategories T : A -> B. We also compare our lax familial pseudofunctors to Weber's familial 2-functors, finding our description is more general (not requiring a terminal object in A), though essentially equivalent when a terminal object does exist. Moreover, our description of lax generics allows for an equivalence between lax generic factorizations and lax familial representability. Finally, we characterize our lax familial pseudofunctors as right lax F-adjoints followed by locally discrete fibrations of bicategories, which in turn yields a simple definition of parametric right adjoint pseudofunctors. We also compare our lax familial pseudofunctors to Weber's familial 2-functors, finding our description is more general (not requiring a terminal object in A), though essentially equivalent when a terminal object does exist. Moreover, our description of lax generics allows for an equivalence between lax generic factorizations and lax familial representability. Finally, we characterize our lax familial pseudofunctors as right lax F-adjoints followed by locally discrete fibrations of bicategories, which in turn yields a simple definition of parametric right adjoint pseudofunctors.
Název v anglickém jazyce
Lax Familial Representability and Lax Generic Factorizations
Popis výsledku anglicky
A classical result due to Diers shows that a copresheaf F: A -> Set on a category A is a coproduct of representables precisely when each connected component of F's category of elements has an initial object. Most often, this condition is imposed on a copresheaf of the form B (X, T-) for a functor T : A -> B, in which case this property says that T admits generic factorizations at X, or equivalently that T is familial at X. A classical result due to Diers shows that a copresheaf F: A -> Set on a category A is a coproduct of representables precisely when each connected component of F's category of elements has an initial object. Most often, this condition is imposed on a copresheaf of the form B (X, T-) for a functor T : A -> B, in which case this property says that T admits generic factorizations at X, or equivalently that T is familial at X. Here we generalize these results to the two-dimensional setting, replacing A with an arbitrary bicategory A, and Set with Cat. In this two-dimensional setting, simply asking that a pseudofunctor F: A -> Cat be a coproduct of representables is often too strong of a condition. Instead, we will only ask that F be a lax conical colimit of representables. This in turn allows for the weaker notion of lax generic factorizations (and lax familial representability) for pseudofunctors of bicategories T : A -> B. We also compare our lax familial pseudofunctors to Weber's familial 2-functors, finding our description is more general (not requiring a terminal object in A), though essentially equivalent when a terminal object does exist. Moreover, our description of lax generics allows for an equivalence between lax generic factorizations and lax familial representability. Finally, we characterize our lax familial pseudofunctors as right lax F-adjoints followed by locally discrete fibrations of bicategories, which in turn yields a simple definition of parametric right adjoint pseudofunctors. We also compare our lax familial pseudofunctors to Weber's familial 2-functors, finding our description is more general (not requiring a terminal object in A), though essentially equivalent when a terminal object does exist. Moreover, our description of lax generics allows for an equivalence between lax generic factorizations and lax familial representability. Finally, we characterize our lax familial pseudofunctors as right lax F-adjoints followed by locally discrete fibrations of bicategories, which in turn yields a simple definition of parametric right adjoint pseudofunctors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theory and Applications of Categories
ISSN
1201-561X
e-ISSN
—
Svazek periodika
35
Číslo periodika v rámci svazku
37
Stát vydavatele periodika
CA - Kanada
Počet stran výsledku
52
Strana od-do
1424-1475
Kód UT WoS článku
000594117700037
EID výsledku v databázi Scopus
2-s2.0-85089849293