Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lax Familial Representability and Lax Generic Factorizations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00117741" target="_blank" >RIV/00216224:14310/20:00117741 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.tac.mta.ca/tac/volumes/35/37/35-37.pdf" target="_blank" >http://www.tac.mta.ca/tac/volumes/35/37/35-37.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Lax Familial Representability and Lax Generic Factorizations

  • Popis výsledku v původním jazyce

    A classical result due to Diers shows that a copresheaf F: A -&gt; Set on a category A is a coproduct of representables precisely when each connected component of F's category of elements has an initial object. Most often, this condition is imposed on a copresheaf of the form B (X, T-) for a functor T : A -&gt; B, in which case this property says that T admits generic factorizations at X, or equivalently that T is familial at X. A classical result due to Diers shows that a copresheaf F: A -&gt; Set on a category A is a coproduct of representables precisely when each connected component of F's category of elements has an initial object. Most often, this condition is imposed on a copresheaf of the form B (X, T-) for a functor T : A -&gt; B, in which case this property says that T admits generic factorizations at X, or equivalently that T is familial at X. Here we generalize these results to the two-dimensional setting, replacing A with an arbitrary bicategory A, and Set with Cat. In this two-dimensional setting, simply asking that a pseudofunctor F: A -&gt; Cat be a coproduct of representables is often too strong of a condition. Instead, we will only ask that F be a lax conical colimit of representables. This in turn allows for the weaker notion of lax generic factorizations (and lax familial representability) for pseudofunctors of bicategories T : A -&gt; B. We also compare our lax familial pseudofunctors to Weber's familial 2-functors, finding our description is more general (not requiring a terminal object in A), though essentially equivalent when a terminal object does exist. Moreover, our description of lax generics allows for an equivalence between lax generic factorizations and lax familial representability. Finally, we characterize our lax familial pseudofunctors as right lax F-adjoints followed by locally discrete fibrations of bicategories, which in turn yields a simple definition of parametric right adjoint pseudofunctors. We also compare our lax familial pseudofunctors to Weber's familial 2-functors, finding our description is more general (not requiring a terminal object in A), though essentially equivalent when a terminal object does exist. Moreover, our description of lax generics allows for an equivalence between lax generic factorizations and lax familial representability. Finally, we characterize our lax familial pseudofunctors as right lax F-adjoints followed by locally discrete fibrations of bicategories, which in turn yields a simple definition of parametric right adjoint pseudofunctors.

  • Název v anglickém jazyce

    Lax Familial Representability and Lax Generic Factorizations

  • Popis výsledku anglicky

    A classical result due to Diers shows that a copresheaf F: A -&gt; Set on a category A is a coproduct of representables precisely when each connected component of F's category of elements has an initial object. Most often, this condition is imposed on a copresheaf of the form B (X, T-) for a functor T : A -&gt; B, in which case this property says that T admits generic factorizations at X, or equivalently that T is familial at X. A classical result due to Diers shows that a copresheaf F: A -&gt; Set on a category A is a coproduct of representables precisely when each connected component of F's category of elements has an initial object. Most often, this condition is imposed on a copresheaf of the form B (X, T-) for a functor T : A -&gt; B, in which case this property says that T admits generic factorizations at X, or equivalently that T is familial at X. Here we generalize these results to the two-dimensional setting, replacing A with an arbitrary bicategory A, and Set with Cat. In this two-dimensional setting, simply asking that a pseudofunctor F: A -&gt; Cat be a coproduct of representables is often too strong of a condition. Instead, we will only ask that F be a lax conical colimit of representables. This in turn allows for the weaker notion of lax generic factorizations (and lax familial representability) for pseudofunctors of bicategories T : A -&gt; B. We also compare our lax familial pseudofunctors to Weber's familial 2-functors, finding our description is more general (not requiring a terminal object in A), though essentially equivalent when a terminal object does exist. Moreover, our description of lax generics allows for an equivalence between lax generic factorizations and lax familial representability. Finally, we characterize our lax familial pseudofunctors as right lax F-adjoints followed by locally discrete fibrations of bicategories, which in turn yields a simple definition of parametric right adjoint pseudofunctors. We also compare our lax familial pseudofunctors to Weber's familial 2-functors, finding our description is more general (not requiring a terminal object in A), though essentially equivalent when a terminal object does exist. Moreover, our description of lax generics allows for an equivalence between lax generic factorizations and lax familial representability. Finally, we characterize our lax familial pseudofunctors as right lax F-adjoints followed by locally discrete fibrations of bicategories, which in turn yields a simple definition of parametric right adjoint pseudofunctors.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theory and Applications of Categories

  • ISSN

    1201-561X

  • e-ISSN

  • Svazek periodika

    35

  • Číslo periodika v rámci svazku

    37

  • Stát vydavatele periodika

    CA - Kanada

  • Počet stran výsledku

    52

  • Strana od-do

    1424-1475

  • Kód UT WoS článku

    000594117700037

  • EID výsledku v databázi Scopus

    2-s2.0-85089849293