Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Infinitary generalizations of Deligne's completeness theorem

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00118489" target="_blank" >RIV/00216224:14310/20:00118489 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1017/jsl.2020.27" target="_blank" >https://doi.org/10.1017/jsl.2020.27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/jsl.2020.27" target="_blank" >10.1017/jsl.2020.27</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Infinitary generalizations of Deligne's completeness theorem

  • Popis výsledku v původním jazyce

    Given a regular cardinal kappa such that kappa(&lt;kappa) = kappa (or any regular if the Generalized Continuum Hypothesis holds), we study a class of toposes with enough points, the kappa-separable toposes. These are equivalent to sheaf toposes over a site with kappa-small limits that has at most kappa many objects and morphisms, the (basis for the) topology being generated by at most. many covering families, and that satisfy a further exactness property T. We prove that these toposes have enough kappa-points, that is, points whose inverse image preserve all kappa-small limits. This generalizes the separable toposes of Makkai and Reyes, that are a particular case when kappa = omega, when property T is trivially satisfied. This result is essentially a completeness theorem for a certain infinitary logic that we call kappa-geometric, where conjunctions of less than. formulas and existential quantification on less than. many variables is allowed. We prove that kappa-geometric theories have kappa-classifying topos having property T, the universal property being that models of the theory in a Grothendieck topos with property T correspond to kappa-geometric morphisms (geometric morphisms the inverse image of which preserves all kappa-small limits) into that topos. Moreover, we prove that kappa-separable toposes occur as the kappa-classifying toposes of kappa-geometric theories of at most. many axioms in canonical form, and that every such kappa-classifying topos is kappa-separable. Finally, we consider the case when. is weakly compact and study the kappa-classifying topos of a kappa-coherent theory (with at most. many axioms), that is, a theory where only disjunction of less than. formulas are allowed, obtaining a version of Deligne's theorem for.-coherent toposes from which we can derive, among other things, Karp's completeness theorem for infinitary classical logic.

  • Název v anglickém jazyce

    Infinitary generalizations of Deligne's completeness theorem

  • Popis výsledku anglicky

    Given a regular cardinal kappa such that kappa(&lt;kappa) = kappa (or any regular if the Generalized Continuum Hypothesis holds), we study a class of toposes with enough points, the kappa-separable toposes. These are equivalent to sheaf toposes over a site with kappa-small limits that has at most kappa many objects and morphisms, the (basis for the) topology being generated by at most. many covering families, and that satisfy a further exactness property T. We prove that these toposes have enough kappa-points, that is, points whose inverse image preserve all kappa-small limits. This generalizes the separable toposes of Makkai and Reyes, that are a particular case when kappa = omega, when property T is trivially satisfied. This result is essentially a completeness theorem for a certain infinitary logic that we call kappa-geometric, where conjunctions of less than. formulas and existential quantification on less than. many variables is allowed. We prove that kappa-geometric theories have kappa-classifying topos having property T, the universal property being that models of the theory in a Grothendieck topos with property T correspond to kappa-geometric morphisms (geometric morphisms the inverse image of which preserves all kappa-small limits) into that topos. Moreover, we prove that kappa-separable toposes occur as the kappa-classifying toposes of kappa-geometric theories of at most. many axioms in canonical form, and that every such kappa-classifying topos is kappa-separable. Finally, we consider the case when. is weakly compact and study the kappa-classifying topos of a kappa-coherent theory (with at most. many axioms), that is, a theory where only disjunction of less than. formulas are allowed, obtaining a version of Deligne's theorem for.-coherent toposes from which we can derive, among other things, Karp's completeness theorem for infinitary classical logic.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Symbolic Logic

  • ISSN

    0022-4812

  • e-ISSN

  • Svazek periodika

    85

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    1147-1162

  • Kód UT WoS článku

    000628900500012

  • EID výsledku v databázi Scopus

    2-s2.0-85102715919