Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

THE LOCALIC ISOTROPY GROUP OF A TOPOS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00108286" target="_blank" >RIV/00216224:14310/18:00108286 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.tac.mta.ca/tac/volumes/33/41/33-41.pdf" target="_blank" >http://www.tac.mta.ca/tac/volumes/33/41/33-41.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    THE LOCALIC ISOTROPY GROUP OF A TOPOS

  • Popis výsledku v původním jazyce

    It has been shown by J.Funk, P.Hofstra and B.Steinberg that any Grothendieck topos T is endowed with a canonical group object, called its isotropy group, which acts functorially on every object of the topos. We show that this group is in fact the group of points of a localic group object, called the localic isotropy group, which also acts on every object, and in fact also on every internal locale and on every T topos. This new localic isotropy group has better functoriality and stability property than the original version and sheds some light on the phenomenon of higher isotropy observed for the ordinary isotropy group. We prove in particular using a localic version of the isotropy quotient that any geometric morphism can be factored uniquely as a connected atomic geometric morphism followed by a so called "essentially anisotropic" geometric morphism, and that connected atomic morphisms are exactly the quotients by open isotropy actions, hence providing a form of Galois theory for general (unpointed) connected atomic geometric morphisms.

  • Název v anglickém jazyce

    THE LOCALIC ISOTROPY GROUP OF A TOPOS

  • Popis výsledku anglicky

    It has been shown by J.Funk, P.Hofstra and B.Steinberg that any Grothendieck topos T is endowed with a canonical group object, called its isotropy group, which acts functorially on every object of the topos. We show that this group is in fact the group of points of a localic group object, called the localic isotropy group, which also acts on every object, and in fact also on every internal locale and on every T topos. This new localic isotropy group has better functoriality and stability property than the original version and sheds some light on the phenomenon of higher isotropy observed for the ordinary isotropy group. We prove in particular using a localic version of the isotropy quotient that any geometric morphism can be factored uniquely as a connected atomic geometric morphism followed by a so called "essentially anisotropic" geometric morphism, and that connected atomic morphisms are exactly the quotients by open isotropy actions, hence providing a form of Galois theory for general (unpointed) connected atomic geometric morphisms.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theory and Applications of Categories

  • ISSN

    1201-561X

  • e-ISSN

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    2018

  • Stát vydavatele periodika

    CA - Kanada

  • Počet stran výsledku

    28

  • Strana od-do

    1318-1345

  • Kód UT WoS článku

    000509270800018

  • EID výsledku v databázi Scopus