Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00119463" target="_blank" >RIV/00216224:14310/21:00119463 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985939:_____/21:00547332 RIV/00216208:11310/21:10440314
Výsledek na webu
<a href="https://doi.org/10.1111/ddi.13378" target="_blank" >https://doi.org/10.1111/ddi.13378</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/ddi.13378" target="_blank" >10.1111/ddi.13378</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species
Popis výsledku v původním jazyce
Aims The rapid increase in the number of species that have naturalized beyond their native range is among the most apparent features of the Anthropocene. How alien species will respond to other processes of future global changes is an emerging concern and remains poorly misunderstood. We therefore ask whether naturalized species will respond to climate and land use change differently than those species not yet naturalized anywhere in the world. Location Global. Methods We investigated future changes in the potential alien range of vascular plant species endemic to Europe that are either naturalized (n = 272) or not yet naturalized (1,213) outside of Europe. Potential ranges were estimated based on projections of species distribution models using 20 future climate-change scenarios. We mapped current and future global centres of naturalization risk. We also analysed expected changes in latitudinal, elevational and areal extent of species' potential alien ranges. Results We showed a large potential for more worldwide naturalizations of European plants currently and in the future. The centres of naturalization risk for naturalized and non-naturalized plants largely overlapped, and their location did not change much under projected future climates. Nevertheless, naturalized plants had their potential range shifting poleward over larger distances, whereas the non-naturalized ones had their potential elevational ranges shifting further upslope under the most severe climate change scenarios. As a result, climate and land use changes are predicted to shrink the potential alien range of European plants, but less so for already naturalized than for non-naturalized species. Main conclusions While currently non-naturalized plants originate frequently from mountain ranges or boreal and Mediterranean biomes in Europe, the naturalized ones usually occur at low elevations, close to human centres of activities. As the latter are expected to increase worldwide, this could explain why the potential alien range of already naturalized plants will shrink less.
Název v anglickém jazyce
Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species
Popis výsledku anglicky
Aims The rapid increase in the number of species that have naturalized beyond their native range is among the most apparent features of the Anthropocene. How alien species will respond to other processes of future global changes is an emerging concern and remains poorly misunderstood. We therefore ask whether naturalized species will respond to climate and land use change differently than those species not yet naturalized anywhere in the world. Location Global. Methods We investigated future changes in the potential alien range of vascular plant species endemic to Europe that are either naturalized (n = 272) or not yet naturalized (1,213) outside of Europe. Potential ranges were estimated based on projections of species distribution models using 20 future climate-change scenarios. We mapped current and future global centres of naturalization risk. We also analysed expected changes in latitudinal, elevational and areal extent of species' potential alien ranges. Results We showed a large potential for more worldwide naturalizations of European plants currently and in the future. The centres of naturalization risk for naturalized and non-naturalized plants largely overlapped, and their location did not change much under projected future climates. Nevertheless, naturalized plants had their potential range shifting poleward over larger distances, whereas the non-naturalized ones had their potential elevational ranges shifting further upslope under the most severe climate change scenarios. As a result, climate and land use changes are predicted to shrink the potential alien range of European plants, but less so for already naturalized than for non-naturalized species. Main conclusions While currently non-naturalized plants originate frequently from mountain ranges or boreal and Mediterranean biomes in Europe, the naturalized ones usually occur at low elevations, close to human centres of activities. As the latter are expected to increase worldwide, this could explain why the potential alien range of already naturalized plants will shrink less.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10619 - Biodiversity conservation
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Diversity and Distributions
ISSN
1366-9516
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
2063-2076
Kód UT WoS článku
000678816800001
EID výsledku v databázi Scopus
2-s2.0-85111321532