Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00119703" target="_blank" >RIV/00216224:14310/22:00119703 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0043135422000586" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0043135422000586</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.watres.2022.118095" target="_blank" >10.1016/j.watres.2022.118095</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution
Popis výsledku v původním jazyce
Reactive intermediates formed upon irradiation of chromophoric dissolved organic matter (CDOM) contribute to the degradation of various organic contaminants in surface waters. Besides well-studied “short-lived” photooxidants, such as triplet state CDOM (3CDOM*) or singlet oxygen, CDOM-derived “long-lived” photooxidants (LLPO) have been suggested as key players in the transformation of electron-rich contaminants. LLPO were hypothesized to mainly consist of phenoxyl radicals derived from phenolic moieties in the CDOM. To test this hypothesis and to better characterize LLPO, the transformation kinetics of selected target compounds (phenols and anilines) induced by a suite of electron-poor model phenoxyl radicals was studied in aerated aqueous solution at pH 8. The phenoxyl radicals were generated by photosensitized oxidation of the parent phenols using aromatic ketones as photosensitizers. Under steady-state irradiation, the presence of any of the electron-poor phenols lead to an enhanced abatement of the phenolic target compounds (at an initial concentration of 1.0 × 10−7 M) compared to solutions containing the photosensitizer but no electron-poor phenol. A trend of increasing reactivity with increasing one-electron reduction potential of the electron-poor phenoxyl radical (range: 0.85‒1.12 V vs. standard hydrogen electrode) was observed. Using the excited triplet state of 2-acetonaphthone as a selective oxidant for phenols, it was observed that the reactivity correlated with the concentration of electron-poor phenoxide present in solution. The rates of transformation of anilines induced by the 4-cyanophenoxyl radical were an order of magnitude smaller than for the phenolic target compounds. This was interpreted as a reduction of the radical intermediates back to the parent compound by the superoxide radical anion. Laser flash photolysis measurements confirmed the formation of the 4-cyanophenoxyl radical in solutions containing 2-acetonaphthone and 4-cyanophenol, and yielded values of (2.6 − 5.3) × 108 M−1 s−1 for the second-order rate constant for the reaction of this radical with 2,4,6-trimethylphenol. These and further results indicate that electron-poor model phenoxyl radicals generated through photosensitized oxidation are useful models to understand the photoreactivity of LLPO as part of the CDOM.
Název v anglickém jazyce
Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution
Popis výsledku anglicky
Reactive intermediates formed upon irradiation of chromophoric dissolved organic matter (CDOM) contribute to the degradation of various organic contaminants in surface waters. Besides well-studied “short-lived” photooxidants, such as triplet state CDOM (3CDOM*) or singlet oxygen, CDOM-derived “long-lived” photooxidants (LLPO) have been suggested as key players in the transformation of electron-rich contaminants. LLPO were hypothesized to mainly consist of phenoxyl radicals derived from phenolic moieties in the CDOM. To test this hypothesis and to better characterize LLPO, the transformation kinetics of selected target compounds (phenols and anilines) induced by a suite of electron-poor model phenoxyl radicals was studied in aerated aqueous solution at pH 8. The phenoxyl radicals were generated by photosensitized oxidation of the parent phenols using aromatic ketones as photosensitizers. Under steady-state irradiation, the presence of any of the electron-poor phenols lead to an enhanced abatement of the phenolic target compounds (at an initial concentration of 1.0 × 10−7 M) compared to solutions containing the photosensitizer but no electron-poor phenol. A trend of increasing reactivity with increasing one-electron reduction potential of the electron-poor phenoxyl radical (range: 0.85‒1.12 V vs. standard hydrogen electrode) was observed. Using the excited triplet state of 2-acetonaphthone as a selective oxidant for phenols, it was observed that the reactivity correlated with the concentration of electron-poor phenoxide present in solution. The rates of transformation of anilines induced by the 4-cyanophenoxyl radical were an order of magnitude smaller than for the phenolic target compounds. This was interpreted as a reduction of the radical intermediates back to the parent compound by the superoxide radical anion. Laser flash photolysis measurements confirmed the formation of the 4-cyanophenoxyl radical in solutions containing 2-acetonaphthone and 4-cyanophenol, and yielded values of (2.6 − 5.3) × 108 M−1 s−1 for the second-order rate constant for the reaction of this radical with 2,4,6-trimethylphenol. These and further results indicate that electron-poor model phenoxyl radicals generated through photosensitized oxidation are useful models to understand the photoreactivity of LLPO as part of the CDOM.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-08239S" target="_blank" >GA19-08239S: Spektroskopie a mikroskopie chemických látek v ledu pro environmentální a farmaceutické účely</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Water Research
ISSN
0043-1354
e-ISSN
1879-2448
Svazek periodika
213
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000758958500001
EID výsledku v databázi Scopus
2-s2.0-85124911457