Semilinear fractional elliptic equations with source term and boundary measure data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00128818" target="_blank" >RIV/00216224:14310/22:00128818 - isvavai.cz</a>
Výsledek na webu
<a href="http://yokohamapublishers.jp/online2/oppafa/vol7/p863.html" target="_blank" >http://yokohamapublishers.jp/online2/oppafa/vol7/p863.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semilinear fractional elliptic equations with source term and boundary measure data
Popis výsledku v původním jazyce
A notion of s-boundary trace recently introduced by Nguyen and Véron (Adv. Nonlinear Stud. 18, 237-267, 2018) is an efficient tool to study boundary value problems with measure data for fractional elliptic equations with an absorption nonlinearity. In this paper, we investigate a fractional equation with a source term $(-Delta)^s u=f(u)$ in $Omega$ with a prescribed s-boundary trace $rho nu$, where $Omega$ is a $C^2$ bounded domain of $mathbb{R}^N$ ($N>2s$), $s in (frac{1}{2},1)$, $fin C^{beta}_{loc}(mathbb{R})$, for some $beta in(0,1)$, $nu$ is a positive Radon measure on $partial Omega$ with total mass 1 and $rho$ is a positive parameter. We provide an existence result for the above equation and discuss regularity property of solutions. When $f(u)=u^p$, we prove that there exists a critical exponent $p_s:=frac{N+s}{N-s}$ in the following sense. If $pgeq p_s$, the problem does not admit any positive solution with $nu$ being a Dirac mass. If $pin(1,p_s)$ there exits a threshold value $rho^*>0$ such that for $rhoin (0, rho^*]$, the problem admits a positive solution and for $rho>rho^*$, no positive solution exists. We also show that, for $rho>0$ small enough, the problem admits at least two positive solutions.
Název v anglickém jazyce
Semilinear fractional elliptic equations with source term and boundary measure data
Popis výsledku anglicky
A notion of s-boundary trace recently introduced by Nguyen and Véron (Adv. Nonlinear Stud. 18, 237-267, 2018) is an efficient tool to study boundary value problems with measure data for fractional elliptic equations with an absorption nonlinearity. In this paper, we investigate a fractional equation with a source term $(-Delta)^s u=f(u)$ in $Omega$ with a prescribed s-boundary trace $rho nu$, where $Omega$ is a $C^2$ bounded domain of $mathbb{R}^N$ ($N>2s$), $s in (frac{1}{2},1)$, $fin C^{beta}_{loc}(mathbb{R})$, for some $beta in(0,1)$, $nu$ is a positive Radon measure on $partial Omega$ with total mass 1 and $rho$ is a positive parameter. We provide an existence result for the above equation and discuss regularity property of solutions. When $f(u)=u^p$, we prove that there exists a critical exponent $p_s:=frac{N+s}{N-s}$ in the following sense. If $pgeq p_s$, the problem does not admit any positive solution with $nu$ being a Dirac mass. If $pin(1,p_s)$ there exits a threshold value $rho^*>0$ such that for $rhoin (0, rho^*]$, the problem admits a positive solution and for $rho>rho^*$, no positive solution exists. We also show that, for $rho>0$ small enough, the problem admits at least two positive solutions.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Pure and Applied Functional Analysis
ISSN
2189-3756
e-ISSN
2189-3764
Svazek periodika
7
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
JP - Japonsko
Počet stran výsledku
23
Strana od-do
863-885
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—