Detecting a citizens' activity profile of an urban territory through natural language processing of social media data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00130436" target="_blank" >RIV/00216224:14310/22:00130436 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.procs.2022.10.203" target="_blank" >https://doi.org/10.1016/j.procs.2022.10.203</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2022.10.203" target="_blank" >10.1016/j.procs.2022.10.203</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting a citizens' activity profile of an urban territory through natural language processing of social media data
Popis výsledku v původním jazyce
The article presents the premises, process, and outcomes of the research, devoted to investigation of the suitability of natural language processing approaches (named entity recognition and subject-predicate-object triplets’ extraction, in particular), applied to social media data, for the problem of building a profile of citizens' activity in an urban territory. Using the named entity recognition approach, supplemented with the custom method of named urban entities distillation, it was possible to build a detailed and representative list of named urban entities for the sample territory of Hatfield, Hertfordshire. Using the subject-predicate-object triplets’ extraction approach, supplemented with the custom activity description patterns, it was possible to get the picture of citizens’ activity corresponding to the identified urban entities. The outcomes were verified on the Twitter and Instagram social networks data and evaluated from the perspectives of the resulting profile quality.
Název v anglickém jazyce
Detecting a citizens' activity profile of an urban territory through natural language processing of social media data
Popis výsledku anglicky
The article presents the premises, process, and outcomes of the research, devoted to investigation of the suitability of natural language processing approaches (named entity recognition and subject-predicate-object triplets’ extraction, in particular), applied to social media data, for the problem of building a profile of citizens' activity in an urban territory. Using the named entity recognition approach, supplemented with the custom method of named urban entities distillation, it was possible to build a detailed and representative list of named urban entities for the sample territory of Hatfield, Hertfordshire. Using the subject-predicate-object triplets’ extraction approach, supplemented with the custom activity description patterns, it was possible to get the picture of citizens’ activity corresponding to the identified urban entities. The outcomes were verified on the Twitter and Instagram social networks data and evaluated from the perspectives of the resulting profile quality.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Procedia Computer Science
ISBN
—
ISSN
1877-0509
e-ISSN
—
Počet stran výsledku
12
Strana od-do
11-22
Název nakladatele
Elsevier
Místo vydání
Amsterdam
Místo konání akce
St. Petersburg, Virtual
Datum konání akce
5. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—