Detecting Unseen Visual Relations Using Analogies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00337253" target="_blank" >RIV/68407700:21730/19:00337253 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICCV.2019.00207" target="_blank" >https://doi.org/10.1109/ICCV.2019.00207</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV.2019.00207" target="_blank" >10.1109/ICCV.2019.00207</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting Unseen Visual Relations Using Analogies
Popis výsledku v původním jazyce
We seek to detect visual relations in images of the form of tripletst= (subject, predicate, object), such as “person riding dog”, where training examples of the individual entities are available but their combinations are unseen at training. This is an important set-up due to the combinatorial nature of visual relations: collecting sufficient training data for all possible triplets would be very hard. The contributions of this work are three-fold. First, we learn a representation of visual relations that combines (i) individual embeddings for subject, object and predicate together with(ii) a visual phrase embedding that represents the relation triplets. Second, we learn how to transfer visual phrase em-beddings from existing training triplets to unseen test triplets using analogies between relations that involve similar ob-jects. Third, we demonstrate the benefits of our approach on three challenging datasets: on HICO-DET, our model achieves significant improvement over a strong baseline for both frequent and unseen triplets, and we observe similar improvement for the retrieval of unseen triplets with out-of-vocabulary predicates on the COCO-a dataset as well as the challenging unusual triplets in the UnRel dataset.
Název v anglickém jazyce
Detecting Unseen Visual Relations Using Analogies
Popis výsledku anglicky
We seek to detect visual relations in images of the form of tripletst= (subject, predicate, object), such as “person riding dog”, where training examples of the individual entities are available but their combinations are unseen at training. This is an important set-up due to the combinatorial nature of visual relations: collecting sufficient training data for all possible triplets would be very hard. The contributions of this work are three-fold. First, we learn a representation of visual relations that combines (i) individual embeddings for subject, object and predicate together with(ii) a visual phrase embedding that represents the relation triplets. Second, we learn how to transfer visual phrase em-beddings from existing training triplets to unseen test triplets using analogies between relations that involve similar ob-jects. Third, we demonstrate the benefits of our approach on three challenging datasets: on HICO-DET, our model achieves significant improvement over a strong baseline for both frequent and unseen triplets, and we observe similar improvement for the retrieval of unseen triplets with out-of-vocabulary predicates on the COCO-a dataset as well as the challenging unusual triplets in the UnRel dataset.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 IEEE International Conference on Computer Vision (ICCV 2019)
ISBN
978-1-7281-4804-5
ISSN
1550-5499
e-ISSN
2380-7504
Počet stran výsledku
10
Strana od-do
1981-1990
Název nakladatele
IEEE Computer Society Press
Místo vydání
Los Alamitos
Místo konání akce
Seoul
Datum konání akce
27. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000531438102012