Weakly-Supervised Learning of Visual Relations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00318980" target="_blank" >RIV/68407700:21730/17:00318980 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICCV.2017.554" target="_blank" >http://dx.doi.org/10.1109/ICCV.2017.554</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV.2017.554" target="_blank" >10.1109/ICCV.2017.554</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Weakly-Supervised Learning of Visual Relations
Popis výsledku v původním jazyce
This paper introduces a novel approach for modeling visual relations between pairs of objects. We call relation a triplet of the form (subject; predicate; object) where the predicate is typically a preposition (eg. 'under', 'in front of') or a verb ('hold', 'ride') that links a pair of objects (subject; object). Learning such relations is challenging as the objects have different spatial configurations and appearances depending on the relation in which they occur. Another major challenge comes from the difficulty to get annotations, especially at box-level, for all possible triplets, which makes both learning and evaluation difficult. The contributions of this paper are threefold. First, we design strong yet flexible visual features that encode the appearance and spatial configuration for pairs of objects. Second, we propose a weakly-supervised discriminative clustering model to learn relations from image-level labels only. Third we introduce a new challenging dataset of unusual relations (UnRel) together with an exhaustive annotation, that enables accurate evaluation of visual relation retrieval. We show experimentally that our model results in state-of-theart results on the visual relationship dataset [32] significantly improving performance on previously unseen relations (zero-shot learning), and confirm this observation on our newly introduced UnRel dataset.
Název v anglickém jazyce
Weakly-Supervised Learning of Visual Relations
Popis výsledku anglicky
This paper introduces a novel approach for modeling visual relations between pairs of objects. We call relation a triplet of the form (subject; predicate; object) where the predicate is typically a preposition (eg. 'under', 'in front of') or a verb ('hold', 'ride') that links a pair of objects (subject; object). Learning such relations is challenging as the objects have different spatial configurations and appearances depending on the relation in which they occur. Another major challenge comes from the difficulty to get annotations, especially at box-level, for all possible triplets, which makes both learning and evaluation difficult. The contributions of this paper are threefold. First, we design strong yet flexible visual features that encode the appearance and spatial configuration for pairs of objects. Second, we propose a weakly-supervised discriminative clustering model to learn relations from image-level labels only. Third we introduce a new challenging dataset of unusual relations (UnRel) together with an exhaustive annotation, that enables accurate evaluation of visual relation retrieval. We show experimentally that our model results in state-of-theart results on the visual relationship dataset [32] significantly improving performance on previously unseen relations (zero-shot learning), and confirm this observation on our newly introduced UnRel dataset.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 IEEE International Conference on Computer Vision (ICCV 2017)
ISBN
978-1-5386-1032-9
ISSN
1550-5499
e-ISSN
—
Počet stran výsledku
10
Strana od-do
5189-5198
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Venice
Datum konání akce
22. 10. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000425498405029