Conformal Fundamental Forms and the Asymptotically Poincare-Einstein Condition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00133850" target="_blank" >RIV/00216224:14310/23:00133850 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.iumj.indiana.edu/oai/2023/72/9518/9518.xml" target="_blank" >https://www.iumj.indiana.edu/oai/2023/72/9518/9518.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1512/iumj.2023.72.9518" target="_blank" >10.1512/iumj.2023.72.9518</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Conformal Fundamental Forms and the Asymptotically Poincare-Einstein Condition
Popis výsledku v původním jazyce
An important problem is to determine under which circumstances a metric on a conformally compact manifold is conformal to a Poincare-Einstein metric. Such conformal rescalings are in general obstructed by conformal invariants of the boundary hypersurface embedding, the first of which is the trace-free second fundamental form and then, at the next order, the trace-free Fialkow tensor. We show that these tensors are the lowest-order examples in a sequence of conformally invariant higher fundamental forms determined by the data of a conformal hypersurface embedding. We give a construction of these canonical extrinsic curvatures. Our main result is that the vanishing of these fundamental forms is a necessary and sufficient condition for a conformally compact metric to be conformally related to an asymptotically Poincare-Einstein metric. More generally, these higher fundamental forms are basic to the study of conformal hypersurface invariants. Because Einstein metrics necessarily have constant scalar curvature, our method employs asymptotic solutions of the singular Yamabe problem to select an asymptotically distinguished conformally compact metric. Our approach relies on conformal tractor calculus as this is key for an extension of the general theory of conformal hypersurface embeddings that we further develop here. In particular, we give in full detail tractor analogs of the classical Gauss Formula and Gauss Theorem for Riemannian hypersurface embeddings.
Název v anglickém jazyce
Conformal Fundamental Forms and the Asymptotically Poincare-Einstein Condition
Popis výsledku anglicky
An important problem is to determine under which circumstances a metric on a conformally compact manifold is conformal to a Poincare-Einstein metric. Such conformal rescalings are in general obstructed by conformal invariants of the boundary hypersurface embedding, the first of which is the trace-free second fundamental form and then, at the next order, the trace-free Fialkow tensor. We show that these tensors are the lowest-order examples in a sequence of conformally invariant higher fundamental forms determined by the data of a conformal hypersurface embedding. We give a construction of these canonical extrinsic curvatures. Our main result is that the vanishing of these fundamental forms is a necessary and sufficient condition for a conformally compact metric to be conformally related to an asymptotically Poincare-Einstein metric. More generally, these higher fundamental forms are basic to the study of conformal hypersurface invariants. Because Einstein metrics necessarily have constant scalar curvature, our method employs asymptotic solutions of the singular Yamabe problem to select an asymptotically distinguished conformally compact metric. Our approach relies on conformal tractor calculus as this is key for an extension of the general theory of conformal hypersurface embeddings that we further develop here. In particular, we give in full detail tractor analogs of the classical Gauss Formula and Gauss Theorem for Riemannian hypersurface embeddings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Indiana University Mathematics Journal
ISSN
0022-2518
e-ISSN
1943-5258
Svazek periodika
72
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
70
Strana od-do
2215-2284
Kód UT WoS článku
001166610900002
EID výsledku v databázi Scopus
—