Semilinear nonlocal elliptic equations with source term and measure data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134082" target="_blank" >RIV/00216224:14310/23:00134082 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11854-022-0245-0" target="_blank" >https://doi.org/10.1007/s11854-022-0245-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11854-022-0245-0" target="_blank" >10.1007/s11854-022-0245-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semilinear nonlocal elliptic equations with source term and measure data
Popis výsledku v původním jazyce
Recently, several works have been undertaken in an attempt to develop a theory for linear or sublinear elliptic equations involving a general class of nonlocal operators characterized by mild assumptions on the associated Green kernel. In this paper, we study the Dirichlet problem for superlinear equation (E) Lu=uP+δμ in a bounded domain Ω with homogeneous boundary or exterior Dirichlet condition, where p > 1 and λ > 0. The operator L belongs to a class of nonlocal operators including typical types of fractional Laplacians and the datum μ is taken in the optimal weighted measure space. The interplay between the operator L , the source term up and the datum μ yields substantial difficulties and reveals the distinctive feature of the problem. We develop a unifying technique based on a fine analysis on the Green kernel, which enables us to construct a theory for semilinear equation (E) in measure frameworks. A main thrust of the paper is to provide a fairly complete description of positive solutions to the Dirichlet problem for (E). In particular, we show that there exist a critical exponent p* and a threshold value λ* such that the multiplicity holds for 1 < p < p* and 0 <λ < λ*, the uniqueness holds for 1 < p < p* and λ = λ*, and the nonexistence holds in other cases. Various types of nonlocal operators are discussed to exemplify the wide applicability of our theory.
Název v anglickém jazyce
Semilinear nonlocal elliptic equations with source term and measure data
Popis výsledku anglicky
Recently, several works have been undertaken in an attempt to develop a theory for linear or sublinear elliptic equations involving a general class of nonlocal operators characterized by mild assumptions on the associated Green kernel. In this paper, we study the Dirichlet problem for superlinear equation (E) Lu=uP+δμ in a bounded domain Ω with homogeneous boundary or exterior Dirichlet condition, where p > 1 and λ > 0. The operator L belongs to a class of nonlocal operators including typical types of fractional Laplacians and the datum μ is taken in the optimal weighted measure space. The interplay between the operator L , the source term up and the datum μ yields substantial difficulties and reveals the distinctive feature of the problem. We develop a unifying technique based on a fine analysis on the Green kernel, which enables us to construct a theory for semilinear equation (E) in measure frameworks. A main thrust of the paper is to provide a fairly complete description of positive solutions to the Dirichlet problem for (E). In particular, we show that there exist a critical exponent p* and a threshold value λ* such that the multiplicity holds for 1 < p < p* and 0 <λ < λ*, the uniqueness holds for 1 < p < p* and λ = λ*, and the nonexistence holds in other cases. Various types of nonlocal operators are discussed to exemplify the wide applicability of our theory.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Lineární a nelineární eliptické rovnice se singulárními daty a související problémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal d'Analyse Mathématique
ISSN
0021-7670
e-ISSN
1565-8538
Svazek periodika
149
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IL - Stát Izrael
Počet stran výsledku
63
Strana od-do
49-111
Kód UT WoS článku
000904992900007
EID výsledku v databázi Scopus
2-s2.0-85144934310