Bundles of Weyl structures and invariant calculus for parabolic geometries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134301" target="_blank" >RIV/00216224:14310/23:00134301 - isvavai.cz</a>
Výsledek na webu
<a href="https://bookstore.ams.org/view?ProductCode=CONM/788" target="_blank" >https://bookstore.ams.org/view?ProductCode=CONM/788</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/conm/788/15819" target="_blank" >10.1090/conm/788/15819</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bundles of Weyl structures and invariant calculus for parabolic geometries
Popis výsledku v původním jazyce
For more than hundred years, various concepts were developed to understand the fields of geometric objects and invariant differential operators between them for conformal Riemannian and projective geometries. More recently, several general tools were presented for the entire class of parabolic geometries, i.e., the Cartan geometries modelled on homogeneous spaces $G/P$ with $P$ a parabolic subgroup in a semi-simple Lie group $G$. Similarly to conformal Riemannian and projective structures, all these geometries determine a class of distinguished affine connections, which carry an affine structure modelled on differential 1-forms $Upsilon$. They correspond to reductions of $P$ to its reductive Levi factor, and they are called the Weyl structures similarly to the conformal case. The standard definition of differential invariants in this setting is as affine invariants of these connections, which do not depend on the choice within the class. In this article, we describe a universal calculus which provides an important first step to determine such invariants. We present a natural procedure how to construct all affine invariants of Weyl connections, which depend only tensorially on the deformations $Upsilon$.
Název v anglickém jazyce
Bundles of Weyl structures and invariant calculus for parabolic geometries
Popis výsledku anglicky
For more than hundred years, various concepts were developed to understand the fields of geometric objects and invariant differential operators between them for conformal Riemannian and projective geometries. More recently, several general tools were presented for the entire class of parabolic geometries, i.e., the Cartan geometries modelled on homogeneous spaces $G/P$ with $P$ a parabolic subgroup in a semi-simple Lie group $G$. Similarly to conformal Riemannian and projective structures, all these geometries determine a class of distinguished affine connections, which carry an affine structure modelled on differential 1-forms $Upsilon$. They correspond to reductions of $P$ to its reductive Levi factor, and they are called the Weyl structures similarly to the conformal case. The standard definition of differential invariants in this setting is as affine invariants of these connections, which do not depend on the choice within the class. In this article, we describe a universal calculus which provides an important first step to determine such invariants. We present a natural procedure how to construct all affine invariants of Weyl connections, which depend only tensorially on the deformations $Upsilon$.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopické a homologické metody a nástroje úzce související s matematickou fyzikou</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The Diverse World of PDEs : Geometry and Mathematical Physics
ISBN
9781470471477
ISSN
0271-4132
e-ISSN
—
Počet stran výsledku
20
Strana od-do
53-72
Název nakladatele
American Mathematical Society
Místo vydání
Rhode Island (USA)
Místo konání akce
Moscow
Datum konání akce
13. 12. 2021
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—