Deep Learning Attention Model for Supervised and Unsupervised Network Community Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00137485" target="_blank" >RIV/00216224:14310/23:00137485 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-36027-5_51" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-36027-5_51</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-36027-5_51" target="_blank" >10.1007/978-3-031-36027-5_51</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Learning Attention Model for Supervised and Unsupervised Network Community Detection
Popis výsledku v původním jazyce
Network community detection is a complex problem that has to utilize heuristic approaches. It often relies on optimizing partition quality functions, such as modularity, description length, stochastic block-model likelihood etc. However, direct application of the traditional optimization methods has limited efficiency in finding the global maxima in such tasks. This paper proposes a novel bi-partite attention graph neural network model for supervised and unsupervised network community detection, suitable for unsupervised optimization of arbitrary partition quality functions, as well as for minimization of a loss function against the provided partition in a supervised setting. The model is demonstrated to be helpful in the unsupervised improvement of suboptimal partitions previously obtained by other known methods like Louvain algorithm for some of the classic and synthetic networks. It is also shown to be efficient in supervised learning of the provided community structure for a set of classic and synthetic networks. Furthermore, the paper serves as a proof-of-concept for the broader application of graph neural network models to unsupervised network optimization.
Název v anglickém jazyce
Deep Learning Attention Model for Supervised and Unsupervised Network Community Detection
Popis výsledku anglicky
Network community detection is a complex problem that has to utilize heuristic approaches. It often relies on optimizing partition quality functions, such as modularity, description length, stochastic block-model likelihood etc. However, direct application of the traditional optimization methods has limited efficiency in finding the global maxima in such tasks. This paper proposes a novel bi-partite attention graph neural network model for supervised and unsupervised network community detection, suitable for unsupervised optimization of arbitrary partition quality functions, as well as for minimization of a loss function against the provided partition in a supervised setting. The model is demonstrated to be helpful in the unsupervised improvement of suboptimal partitions previously obtained by other known methods like Louvain algorithm for some of the classic and synthetic networks. It is also shown to be efficient in supervised learning of the provided community structure for a set of classic and synthetic networks. Furthermore, the paper serves as a proof-of-concept for the broader application of graph neural network models to unsupervised network optimization.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computational Science – ICCS 2023
ISBN
9783031360268
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
8
Strana od-do
647-654
Název nakladatele
Springer Cham
Místo vydání
Cham
Místo konání akce
Prague
Datum konání akce
3. 7. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—