Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Boundary value problems in Euclidean space for bosonic Laplacians

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139555" target="_blank" >RIV/00216224:14310/24:00139555 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s40627-024-00132-2" target="_blank" >https://link.springer.com/article/10.1007/s40627-024-00132-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s40627-024-00132-2" target="_blank" >10.1007/s40627-024-00132-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Boundary value problems in Euclidean space for bosonic Laplacians

  • Popis výsledku v původním jazyce

    A bosonic Laplacian is a conformally invariant second order differential operator acting on smooth functions defined on domains in Euclidean space and taking values in higher order irreducible representations of the special orthogonal group, in this case, the irreducible representation spaces of homogeneous harmonic polynomials. In this paper, we study boundary value problems involving bosonic Laplacians in the upper-half space and the unit ball. Poisson kernels in the upper-half space and the unit ball are constructed, which give us solutions to the Dirichlet problems with L^p boundary data, 1 le p le infty. We also prove the uniqueness for solutions to the Dirichlet problems with continuous data for bosonic Laplacians and provide analogs of some properties of harmonic functions for null solutions of bosonic Laplacians, for instance, Cauchy’s estimates, the mean-value property, Liouville’s Theorem, etc.

  • Název v anglickém jazyce

    Boundary value problems in Euclidean space for bosonic Laplacians

  • Popis výsledku anglicky

    A bosonic Laplacian is a conformally invariant second order differential operator acting on smooth functions defined on domains in Euclidean space and taking values in higher order irreducible representations of the special orthogonal group, in this case, the irreducible representation spaces of homogeneous harmonic polynomials. In this paper, we study boundary value problems involving bosonic Laplacians in the upper-half space and the unit ball. Poisson kernels in the upper-half space and the unit ball are constructed, which give us solutions to the Dirichlet problems with L^p boundary data, 1 le p le infty. We also prove the uniqueness for solutions to the Dirichlet problems with continuous data for bosonic Laplacians and provide analogs of some properties of harmonic functions for null solutions of bosonic Laplacians, for instance, Cauchy’s estimates, the mean-value property, Liouville’s Theorem, etc.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Lineární a nelineární eliptické rovnice se singulárními daty a související problémy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Complex Analysis and its Synergies

  • ISSN

    2524-7581

  • e-ISSN

    2197-120X

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85188295547