Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Representability of Kleene Posets and Kleene Lattices

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139677" target="_blank" >RIV/00216224:14310/24:00139677 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15310/24:73627583

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11225-023-10080-3" target="_blank" >https://link.springer.com/article/10.1007/s11225-023-10080-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11225-023-10080-3" target="_blank" >10.1007/s11225-023-10080-3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Representability of Kleene Posets and Kleene Lattices

  • Popis výsledku v původním jazyce

    A Kleene lattice is a distributive lattice equipped with an antitone involution and satisfying the so-called normality condition. These lattices were introduced by J. A. Kalman. We extended this concept also for posets with an antitone involution. In our recent paper (Chajda, Langer and Paseka, in: Proceeding of 2022 IEEE 52th International Symposium on Multiple-Valued Logic, Springer, 2022), we showed how to construct such Kleene lattices or Kleene posets from a given distributive lattice or poset and a fixed element of this lattice or poset by using the so-called twist product construction, respectively. We extend this construction of Kleene lattices and Kleene posets by considering a fixed subset instead of a fixed element. Moreover, we show that in some cases, this generating poset can be embedded into the resulting Kleene poset. We investigate the question when a Kleene poset can be represented by a Kleene poset obtained by the mentioned construction. We show that a direct product of representable Kleene posets is again representable and hence a direct product of finite chains is representable. This does not hold in general for subdirect products, but we show some examples where it holds. We present large classes of representable and non-representable Kleene posets. Finally, we investigate two kinds of extensions of a distributive poset A, namely its Dedekind-MacNeille completion DM(A) and a completion G(A) which coincides with DM(A) provided A is finite. In particular we prove that if A is a Kleene poset then its extension G(A) is also a Kleene lattice. If the subset X of principal order ideals of A is involution-closed and doubly dense in G(A) then it generates G(A) and it is isomorphic to A itself.

  • Název v anglickém jazyce

    Representability of Kleene Posets and Kleene Lattices

  • Popis výsledku anglicky

    A Kleene lattice is a distributive lattice equipped with an antitone involution and satisfying the so-called normality condition. These lattices were introduced by J. A. Kalman. We extended this concept also for posets with an antitone involution. In our recent paper (Chajda, Langer and Paseka, in: Proceeding of 2022 IEEE 52th International Symposium on Multiple-Valued Logic, Springer, 2022), we showed how to construct such Kleene lattices or Kleene posets from a given distributive lattice or poset and a fixed element of this lattice or poset by using the so-called twist product construction, respectively. We extend this construction of Kleene lattices and Kleene posets by considering a fixed subset instead of a fixed element. Moreover, we show that in some cases, this generating poset can be embedded into the resulting Kleene poset. We investigate the question when a Kleene poset can be represented by a Kleene poset obtained by the mentioned construction. We show that a direct product of representable Kleene posets is again representable and hence a direct product of finite chains is representable. This does not hold in general for subdirect products, but we show some examples where it holds. We present large classes of representable and non-representable Kleene posets. Finally, we investigate two kinds of extensions of a distributive poset A, namely its Dedekind-MacNeille completion DM(A) and a completion G(A) which coincides with DM(A) provided A is finite. In particular we prove that if A is a Kleene poset then its extension G(A) is also a Kleene lattice. If the subset X of principal order ideals of A is involution-closed and doubly dense in G(A) then it generates G(A) and it is isomorphic to A itself.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Studia Logica

  • ISSN

    0039-3215

  • e-ISSN

    1572-8730

  • Svazek periodika

    112

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    37

  • Strana od-do

    1281-1317

  • Kód UT WoS článku

    001116501800001

  • EID výsledku v databázi Scopus

    2-s2.0-85178954026