Representability of Kleene Posets and Kleene Lattices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139677" target="_blank" >RIV/00216224:14310/24:00139677 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/24:73627583
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11225-023-10080-3" target="_blank" >https://link.springer.com/article/10.1007/s11225-023-10080-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11225-023-10080-3" target="_blank" >10.1007/s11225-023-10080-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Representability of Kleene Posets and Kleene Lattices
Popis výsledku v původním jazyce
A Kleene lattice is a distributive lattice equipped with an antitone involution and satisfying the so-called normality condition. These lattices were introduced by J. A. Kalman. We extended this concept also for posets with an antitone involution. In our recent paper (Chajda, Langer and Paseka, in: Proceeding of 2022 IEEE 52th International Symposium on Multiple-Valued Logic, Springer, 2022), we showed how to construct such Kleene lattices or Kleene posets from a given distributive lattice or poset and a fixed element of this lattice or poset by using the so-called twist product construction, respectively. We extend this construction of Kleene lattices and Kleene posets by considering a fixed subset instead of a fixed element. Moreover, we show that in some cases, this generating poset can be embedded into the resulting Kleene poset. We investigate the question when a Kleene poset can be represented by a Kleene poset obtained by the mentioned construction. We show that a direct product of representable Kleene posets is again representable and hence a direct product of finite chains is representable. This does not hold in general for subdirect products, but we show some examples where it holds. We present large classes of representable and non-representable Kleene posets. Finally, we investigate two kinds of extensions of a distributive poset A, namely its Dedekind-MacNeille completion DM(A) and a completion G(A) which coincides with DM(A) provided A is finite. In particular we prove that if A is a Kleene poset then its extension G(A) is also a Kleene lattice. If the subset X of principal order ideals of A is involution-closed and doubly dense in G(A) then it generates G(A) and it is isomorphic to A itself.
Název v anglickém jazyce
Representability of Kleene Posets and Kleene Lattices
Popis výsledku anglicky
A Kleene lattice is a distributive lattice equipped with an antitone involution and satisfying the so-called normality condition. These lattices were introduced by J. A. Kalman. We extended this concept also for posets with an antitone involution. In our recent paper (Chajda, Langer and Paseka, in: Proceeding of 2022 IEEE 52th International Symposium on Multiple-Valued Logic, Springer, 2022), we showed how to construct such Kleene lattices or Kleene posets from a given distributive lattice or poset and a fixed element of this lattice or poset by using the so-called twist product construction, respectively. We extend this construction of Kleene lattices and Kleene posets by considering a fixed subset instead of a fixed element. Moreover, we show that in some cases, this generating poset can be embedded into the resulting Kleene poset. We investigate the question when a Kleene poset can be represented by a Kleene poset obtained by the mentioned construction. We show that a direct product of representable Kleene posets is again representable and hence a direct product of finite chains is representable. This does not hold in general for subdirect products, but we show some examples where it holds. We present large classes of representable and non-representable Kleene posets. Finally, we investigate two kinds of extensions of a distributive poset A, namely its Dedekind-MacNeille completion DM(A) and a completion G(A) which coincides with DM(A) provided A is finite. In particular we prove that if A is a Kleene poset then its extension G(A) is also a Kleene lattice. If the subset X of principal order ideals of A is involution-closed and doubly dense in G(A) then it generates G(A) and it is isomorphic to A itself.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studia Logica
ISSN
0039-3215
e-ISSN
1572-8730
Svazek periodika
112
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
37
Strana od-do
1281-1317
Kód UT WoS článku
001116501800001
EID výsledku v databázi Scopus
2-s2.0-85178954026