Models of CR Manifolds and Their Symmetry Algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139731" target="_blank" >RIV/00216224:14310/24:00139731 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61988987:17310/24:A2503864
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00006-024-01341-y" target="_blank" >https://link.springer.com/article/10.1007/s00006-024-01341-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00006-024-01341-y" target="_blank" >10.1007/s00006-024-01341-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Models of CR Manifolds and Their Symmetry Algebras
Popis výsledku v původním jazyce
In this paper we give an exposition of several recent results on local symmetries of real submanifolds in complex space, featuring new examples and important corollaries. Departing from Levi non-degenerate hypersurfaces, treated in the classical Chern–Moser theory, we explore three important classes of manifolds, which naturally extend the classical case. We start with quadratic models for real submanifolds of higher codimension and review some recent striking results, which demonstrate that such higher codimension models may possess symmetries of arbitrarily high jet degree. This disproves the long held belief that the fundamental 2-jet determination results from Chern–Moser theory extend to this case. As a second case, we consider hypersurfaces with singular Levi form at a point, which are of finite multitype. This leads to the study of holomorphically nondegenerate polynomial models. We outline several results on their symmetry algebras including a characterization of models admitting nonlinear symmetries. In the third part we consider the class of structures with everywhere singular Levi forms that has received the most attention recently, namely everywhere 2-nondegenerate structures. We present a computation of their Catlin multitype and results on symmetry algebras of their weighted homogeneous (w.r.t. multitype) models.
Název v anglickém jazyce
Models of CR Manifolds and Their Symmetry Algebras
Popis výsledku anglicky
In this paper we give an exposition of several recent results on local symmetries of real submanifolds in complex space, featuring new examples and important corollaries. Departing from Levi non-degenerate hypersurfaces, treated in the classical Chern–Moser theory, we explore three important classes of manifolds, which naturally extend the classical case. We start with quadratic models for real submanifolds of higher codimension and review some recent striking results, which demonstrate that such higher codimension models may possess symmetries of arbitrarily high jet degree. This disproves the long held belief that the fundamental 2-jet determination results from Chern–Moser theory extend to this case. As a second case, we consider hypersurfaces with singular Levi form at a point, which are of finite multitype. This leads to the study of holomorphically nondegenerate polynomial models. We outline several results on their symmetry algebras including a characterization of models admitting nonlinear symmetries. In the third part we consider the class of structures with everywhere singular Levi forms that has received the most attention recently, namely everywhere 2-nondegenerate structures. We present a computation of their Catlin multitype and results on symmetry algebras of their weighted homogeneous (w.r.t. multitype) models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC22-15012J" target="_blank" >GC22-15012J: Hladká a analytická regularita v CR geometrii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Applied Clifford Algebras
ISSN
0188-7009
e-ISSN
1661-4909
Svazek periodika
34
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
001262985300001
EID výsledku v databázi Scopus
2-s2.0-85197561915