Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Metoda meta-učení pro volbu šířky jádra

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F04%3A00010093" target="_blank" >RIV/00216224:14330/04:00010093 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A meta-learning method to select the kernel width in Support Vector Regression

  • Popis výsledku v původním jazyce

    The Support Vector Machine algorithm is sensitive to the choice of parameter settings. If these are not set correctly, the algorithm may have a substandard performance. Suggesting a good setting is thus an important problem. We propose a meta-learning methodology for this purpose and exploit information about the past performance of different settings. The methodology is applied to set the width of the Gaussian kernel. We carry out an extensive empirical evaluation, including comparisons with other methods (fixed default ranking; selection based on cross-validation and a heuristic method commonly used to set the width of the SVM kernel). We show that our methodology can select settings with low error while providing significant savings in time. Furtherwork should be carried out to see how the methodology could be adapted to different parameter setting tasks.

  • Název v anglickém jazyce

    A meta-learning method to select the kernel width in Support Vector Regression

  • Popis výsledku anglicky

    The Support Vector Machine algorithm is sensitive to the choice of parameter settings. If these are not set correctly, the algorithm may have a substandard performance. Suggesting a good setting is thus an important problem. We propose a meta-learning methodology for this purpose and exploit information about the past performance of different settings. The methodology is applied to set the width of the Gaussian kernel. We carry out an extensive empirical evaluation, including comparisons with other methods (fixed default ranking; selection based on cross-validation and a heuristic method commonly used to set the width of the SVM kernel). We show that our methodology can select settings with low error while providing significant savings in time. Furtherwork should be carried out to see how the methodology could be adapted to different parameter setting tasks.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2004

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Machine Learning Journal

  • ISSN

    0885-6125

  • e-ISSN

  • Svazek periodika

    54

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    195-209

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus