Kombinatorické generování reprezentací matroidů: teorie a praxe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F07%3A00021396" target="_blank" >RIV/00216224:14330/07:00021396 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combinatorial Generation of Matroid Representations: Theory and Practice
Popis výsledku v původním jazyce
Matroids (also called combinatorial geometries) present a strong combinatorial generalization of graphs and matrices. Unlike isomorph-free generation of graphs, which has been extensively studied both from theoretical and practical points of view, not much research has been done so far about matroid generation. Perhaps the main problem with matroid generation lies in a very complex internal structure of a matroid. That is why we focus on generation of suitable matroid representations, and we outline a way how to exhaustively generate matroid representations over finite fields in reasonable computing time. In particular, we extend here some enumeration results on binary (over the binary field) combinatorial geometries by Kingan et al.
Název v anglickém jazyce
Combinatorial Generation of Matroid Representations: Theory and Practice
Popis výsledku anglicky
Matroids (also called combinatorial geometries) present a strong combinatorial generalization of graphs and matrices. Unlike isomorph-free generation of graphs, which has been extensively studied both from theoretical and practical points of view, not much research has been done so far about matroid generation. Perhaps the main problem with matroid generation lies in a very complex internal structure of a matroid. That is why we focus on generation of suitable matroid representations, and we outline a way how to exhaustively generate matroid representations over finite fields in reasonable computing time. In particular, we extend here some enumeration results on binary (over the binary field) combinatorial geometries by Kingan et al.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Innovative Applications of Information Technology for the Developing World
ISBN
978-1-86094-827-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
3-7
Název nakladatele
World Scientific Publishing
Místo vydání
Singapore
Místo konání akce
Kathmandu, Nepal
Datum konání akce
1. 1. 2005
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—