Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An Adaptive Algorithm for Multimodal Focus Functions in Automated Fluorescence Microscopy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F08%3A00026789" target="_blank" >RIV/00216224:14330/08:00026789 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An Adaptive Algorithm for Multimodal Focus Functions in Automated Fluorescence Microscopy

  • Popis výsledku v původním jazyce

    This work presents a new autofocusing algorithm for fluorescence microscopy that aims at finding all significant planes of focus in cases that the focus function applied on real data is not unimodal, which is often the case. First, nineteen focus functions are tested and their ability to show local maxima clearly is evaluated. The results show that only six focus functions work successfully. Then adaptively variable step size is introduced because wide range of possible focus positions has to be passednot to miss a local maximum. The algorithm therefore assesses the steepness of the focus function on-line so that it can decide whether bigger or smaller step size should be used for acquiring next image. It is shown that for Normalized Variance, the knowledge about steepness can be obtained after normalizing with respect to the theoretical maximum of this function. The resulting algorithm is reliable and efficient compared to a simple procedure with constant steps.

  • Název v anglickém jazyce

    An Adaptive Algorithm for Multimodal Focus Functions in Automated Fluorescence Microscopy

  • Popis výsledku anglicky

    This work presents a new autofocusing algorithm for fluorescence microscopy that aims at finding all significant planes of focus in cases that the focus function applied on real data is not unimodal, which is often the case. First, nineteen focus functions are tested and their ability to show local maxima clearly is evaluated. The results show that only six focus functions work successfully. Then adaptively variable step size is introduced because wide range of possible focus positions has to be passednot to miss a local maximum. The algorithm therefore assesses the steepness of the focus function on-line so that it can decide whether bigger or smaller step size should be used for acquiring next image. It is shown that for Normalized Variance, the knowledge about steepness can be obtained after normalizing with respect to the theoretical maximum of this function. The resulting algorithm is reliable and efficient compared to a simple procedure with constant steps.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Medical Imaging Conference

  • ISBN

    978-1-4244-2714-7

  • ISSN

    1082-3654

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

  • Název nakladatele

    IEEE

  • Místo vydání

    Dresden

  • Místo konání akce

    Dresden

  • Datum konání akce

    22. 10. 2008

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku