Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A supernodal formulation of vertex colouring with applications in course timetabling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F10%3A00043680" target="_blank" >RIV/00216224:14330/10:00043680 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A supernodal formulation of vertex colouring with applications in course timetabling

  • Popis výsledku v původním jazyce

    For many problems in scheduling and timetabling, the choice of a mathematical programming formulation is determined by the formulation of the graph colouring component. This paper briefly surveys seven known integer programming formulations of vertex colouring and introduces a new approach using "supernodes". In the definition of George and McIntyre (SIAM J. Numer. Anal. 15(1):90-112, 1978), a "supernode" is a complete subgraph, within which every pair of vertices have the same neighbourhood outside ofthe subgraph. A polynomial-time algorithm for obtaining the best possible partition of an arbitrary graph into supernodes is given. This makes it possible to use any formulation of vertex multicolouring to encode vertex colouring. Results of empirical tests on benchmark instances in graph colouring (DIMACS) and timetabling (Udine Course Timetabling) are also provided and discussed.

  • Název v anglickém jazyce

    A supernodal formulation of vertex colouring with applications in course timetabling

  • Popis výsledku anglicky

    For many problems in scheduling and timetabling, the choice of a mathematical programming formulation is determined by the formulation of the graph colouring component. This paper briefly surveys seven known integer programming formulations of vertex colouring and introduces a new approach using "supernodes". In the definition of George and McIntyre (SIAM J. Numer. Anal. 15(1):90-112, 1978), a "supernode" is a complete subgraph, within which every pair of vertices have the same neighbourhood outside ofthe subgraph. A polynomial-time algorithm for obtaining the best possible partition of an arbitrary graph into supernodes is given. This makes it possible to use any formulation of vertex multicolouring to encode vertex colouring. Results of empirical tests on benchmark instances in graph colouring (DIMACS) and timetabling (Udine Course Timetabling) are also provided and discussed.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F07%2F0205" target="_blank" >GA201/07/0205: Dynamické aspekty rozvrhování</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of Operations Research

  • ISSN

    0254-5330

  • e-ISSN

  • Svazek periodika

    179

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    26

  • Strana od-do

  • Kód UT WoS článku

    000281246700007

  • EID výsledku v databázi Scopus