Improving the Classification of Study-related Data through Social Network Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F11%3A00053570" target="_blank" >RIV/00216224:14330/11:00053570 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving the Classification of Study-related Data through Social Network Analysis
Popis výsledku v původním jazyce
The Information System of Masaryk University (IS MU) hosts applications utilized for managing study-related records, e-learning tools and those facilitating communication inside the University. This paper is concerned with improvement of results obtainedwith Excalibur, a tool for mining study-related data, when linked data have been added. These data describe social dependencies gathered from e-mail and discussion boards conversation. We first describe results based on the original (non-linked) data that are periodically saved into Excalibur data warehouse. Then focus on extraction of social dependencies namely relations and communication among students. We describe a method for feature extraction from the social dependencies. New features were explored by social network analysis and visualization tool Pajek and added to the original data. We show that such enriched data allows to significantly improve results obtained with data mining methods.
Název v anglickém jazyce
Improving the Classification of Study-related Data through Social Network Analysis
Popis výsledku anglicky
The Information System of Masaryk University (IS MU) hosts applications utilized for managing study-related records, e-learning tools and those facilitating communication inside the University. This paper is concerned with improvement of results obtainedwith Excalibur, a tool for mining study-related data, when linked data have been added. These data describe social dependencies gathered from e-mail and discussion boards conversation. We first describe results based on the original (non-linked) data that are periodically saved into Excalibur data warehouse. Then focus on extraction of social dependencies namely relations and communication among students. We describe a method for feature extraction from the social dependencies. New features were explored by social network analysis and visualization tool Pajek and added to the original data. We show that such enriched data allows to significantly improve results obtained with data mining methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LA09016" target="_blank" >LA09016: Účast ČR v European Research Consortium for Informatics and Mathematics (ERCIM)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Memics 2011 - Seventh Doctoral Workshop on Mathematical and Engeneering Methods in Computer Science
ISBN
978-80-214-4305-1
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
3-10
Název nakladatele
Brno University of Technology
Místo vydání
Brno
Místo konání akce
Lednice
Datum konání akce
1. 1. 2011
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—