Graph Mining and Outlier Detection Meet Logic Proof Tutoring
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F14%3A00076475" target="_blank" >RIV/00216224:14330/14:00076475 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph Mining and Outlier Detection Meet Logic Proof Tutoring
Popis výsledku v původním jazyce
We introduce a new method for analysis and evaluation of logic proofs constructed by undergraduate students, e.g. resolution or tableaux proofs. This method employs graph mining and outlier detection. The data has been obtained from a web-based system for input of logic proofs built at FI MU. The data contains a tree structure of the proof and also temporal information about all actions that a student performed, e.g. a node insertion into a proof, or its deletion, drawing or deletion of an edge, or textmanipulations. We introduce a new method for multi-level generalization of subgraphs that is useful for characterization of logic proofs. We use this method for feature construction and perform class-based outlier detection on logic proofs represented by these new features. We show that this method helps to find unusual students' solutions and to improve semi-automatic evaluation of the solutions.
Název v anglickém jazyce
Graph Mining and Outlier Detection Meet Logic Proof Tutoring
Popis výsledku anglicky
We introduce a new method for analysis and evaluation of logic proofs constructed by undergraduate students, e.g. resolution or tableaux proofs. This method employs graph mining and outlier detection. The data has been obtained from a web-based system for input of logic proofs built at FI MU. The data contains a tree structure of the proof and also temporal information about all actions that a student performed, e.g. a node insertion into a proof, or its deletion, drawing or deletion of an edge, or textmanipulations. We introduce a new method for multi-level generalization of subgraphs that is useful for characterization of logic proofs. We use this method for feature construction and perform class-based outlier detection on logic proofs represented by these new features. We show that this method helps to find unusual students' solutions and to improve semi-automatic evaluation of the solutions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of EDM 2014 Ws Graph-based Educational Data Mining (G-EDM)
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
8
Strana od-do
43-50
Název nakladatele
CEUR-WS.org
Místo vydání
London
Místo konání akce
London, United Kingdom
Datum konání akce
4. 7. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—