Are Collaborative Filtering Methods Suitable for Student Performance Prediction?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F15%3A00083048" target="_blank" >RIV/00216224:14330/15:00083048 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-23485-4_42" target="_blank" >http://dx.doi.org/10.1007/978-3-319-23485-4_42</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-23485-4_42" target="_blank" >10.1007/978-3-319-23485-4_42</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Are Collaborative Filtering Methods Suitable for Student Performance Prediction?
Popis výsledku v původním jazyce
Researchers have been focusing on prediction of students? behavior for many years. Different systems take advantages of such revealed information and try to attract, motivate, and help students to improve their knowledge. Our goal is to predict student performance in particular courses at the beginning of the semester based on the student?s history. Our approach is based on the idea of representing students? knowledge as a set of grades of their passed courses and finding the most similar students. Collaborative filtering methods were utilized for this task and the results were verified on the historical data originated from the Information System of Masaryk University. The results show that this approach is similarly effective as the commonly used machine learning methods like Support Vector Machines.
Název v anglickém jazyce
Are Collaborative Filtering Methods Suitable for Student Performance Prediction?
Popis výsledku anglicky
Researchers have been focusing on prediction of students? behavior for many years. Different systems take advantages of such revealed information and try to attract, motivate, and help students to improve their knowledge. Our goal is to predict student performance in particular courses at the beginning of the semester based on the student?s history. Our approach is based on the idea of representing students? knowledge as a set of grades of their passed courses and finding the most similar students. Collaborative filtering methods were utilized for this task and the results were verified on the historical data originated from the Information System of Masaryk University. The results show that this approach is similarly effective as the commonly used machine learning methods like Support Vector Machines.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Progress in Artificial Intelligence - 17th Portuguese Conference on Artificial Inteligence - EPIA 2015
ISBN
9783319234847
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
6
Strana od-do
425-430
Název nakladatele
Springer International Publishing
Místo vydání
Portugal
Místo konání akce
Coimbra, Portugal
Datum konání akce
1. 1. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—