Predictive modeling for student grade prediction using machine learning and visual analytics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017204" target="_blank" >RIV/62690094:18450/20:50017204 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/FAIA200550" target="_blank" >http://dx.doi.org/10.3233/FAIA200550</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA200550" target="_blank" >10.3233/FAIA200550</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predictive modeling for student grade prediction using machine learning and visual analytics
Popis výsledku v původním jazyce
Data-driven plays an important role in determining the quality of services in institutions of higher learning (HEIs). Increasingly data in education is encouraging institutions to find ways to improve student academic performance. By using machine learning with visual analytics, data can be predicted based on valuable information and presented with interactive visualizations for institutions to improve decision making. Therefore, predicting students' academic performance is critical to identifying students at risk of failing a course. In this paper, we propose two approaches, such as (i) a prediction model for predicting students' final grade based on machine learning that interacts with computational models; (ii) visual analytics to visualize predictive models and insightful data for educators. The data were tested using student achievement records collected from one of the Malaysian Polytechnic databases. The data set used in this study involved 489 first semester students in Computer System Architecture (CSA) course from 2016 to 2019. The decision tree algorithms (J48), Random Tree (RT), Random Forest (RF), and REPTree) was used on the student data set to produce the best predictions of the model. Experimental results show that J48 returns the highest accuracy with 99.8 %, among other algorithms. The findings of this study can help educators predict student success or failure for a particular course at the end of the semester and help educators make informed decisions to improve student academic performance at Polytechnic Malaysia. © 2020 The authors and IOS Press. All rights reserved.
Název v anglickém jazyce
Predictive modeling for student grade prediction using machine learning and visual analytics
Popis výsledku anglicky
Data-driven plays an important role in determining the quality of services in institutions of higher learning (HEIs). Increasingly data in education is encouraging institutions to find ways to improve student academic performance. By using machine learning with visual analytics, data can be predicted based on valuable information and presented with interactive visualizations for institutions to improve decision making. Therefore, predicting students' academic performance is critical to identifying students at risk of failing a course. In this paper, we propose two approaches, such as (i) a prediction model for predicting students' final grade based on machine learning that interacts with computational models; (ii) visual analytics to visualize predictive models and insightful data for educators. The data were tested using student achievement records collected from one of the Malaysian Polytechnic databases. The data set used in this study involved 489 first semester students in Computer System Architecture (CSA) course from 2016 to 2019. The decision tree algorithms (J48), Random Tree (RT), Random Forest (RF), and REPTree) was used on the student data set to produce the best predictions of the model. Experimental results show that J48 returns the highest accuracy with 99.8 %, among other algorithms. The findings of this study can help educators predict student success or failure for a particular course at the end of the semester and help educators make informed decisions to improve student academic performance at Polytechnic Malaysia. © 2020 The authors and IOS Press. All rights reserved.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Frontiers in Artificial Intelligence and Applications
ISBN
978-1-64368-114-6
ISSN
0922-6389
e-ISSN
—
Počet stran výsledku
11
Strana od-do
32-42
Název nakladatele
IOS Press BV
Místo vydání
Amsterdam
Místo konání akce
Japonsko
Datum konání akce
22. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—