Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predictive modeling for student grade prediction using machine learning and visual analytics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017204" target="_blank" >RIV/62690094:18450/20:50017204 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.3233/FAIA200550" target="_blank" >http://dx.doi.org/10.3233/FAIA200550</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/FAIA200550" target="_blank" >10.3233/FAIA200550</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predictive modeling for student grade prediction using machine learning and visual analytics

  • Popis výsledku v původním jazyce

    Data-driven plays an important role in determining the quality of services in institutions of higher learning (HEIs). Increasingly data in education is encouraging institutions to find ways to improve student academic performance. By using machine learning with visual analytics, data can be predicted based on valuable information and presented with interactive visualizations for institutions to improve decision making. Therefore, predicting students&apos; academic performance is critical to identifying students at risk of failing a course. In this paper, we propose two approaches, such as (i) a prediction model for predicting students&apos; final grade based on machine learning that interacts with computational models; (ii) visual analytics to visualize predictive models and insightful data for educators. The data were tested using student achievement records collected from one of the Malaysian Polytechnic databases. The data set used in this study involved 489 first semester students in Computer System Architecture (CSA) course from 2016 to 2019. The decision tree algorithms (J48), Random Tree (RT), Random Forest (RF), and REPTree) was used on the student data set to produce the best predictions of the model. Experimental results show that J48 returns the highest accuracy with 99.8 %, among other algorithms. The findings of this study can help educators predict student success or failure for a particular course at the end of the semester and help educators make informed decisions to improve student academic performance at Polytechnic Malaysia. © 2020 The authors and IOS Press. All rights reserved.

  • Název v anglickém jazyce

    Predictive modeling for student grade prediction using machine learning and visual analytics

  • Popis výsledku anglicky

    Data-driven plays an important role in determining the quality of services in institutions of higher learning (HEIs). Increasingly data in education is encouraging institutions to find ways to improve student academic performance. By using machine learning with visual analytics, data can be predicted based on valuable information and presented with interactive visualizations for institutions to improve decision making. Therefore, predicting students&apos; academic performance is critical to identifying students at risk of failing a course. In this paper, we propose two approaches, such as (i) a prediction model for predicting students&apos; final grade based on machine learning that interacts with computational models; (ii) visual analytics to visualize predictive models and insightful data for educators. The data were tested using student achievement records collected from one of the Malaysian Polytechnic databases. The data set used in this study involved 489 first semester students in Computer System Architecture (CSA) course from 2016 to 2019. The decision tree algorithms (J48), Random Tree (RT), Random Forest (RF), and REPTree) was used on the student data set to produce the best predictions of the model. Experimental results show that J48 returns the highest accuracy with 99.8 %, among other algorithms. The findings of this study can help educators predict student success or failure for a particular course at the end of the semester and help educators make informed decisions to improve student academic performance at Polytechnic Malaysia. © 2020 The authors and IOS Press. All rights reserved.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Frontiers in Artificial Intelligence and Applications

  • ISBN

    978-1-64368-114-6

  • ISSN

    0922-6389

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    32-42

  • Název nakladatele

    IOS Press BV

  • Místo vydání

    Amsterdam

  • Místo konání akce

    Japonsko

  • Datum konání akce

    22. 10. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku