Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predicting College Students’ Placements Based on Academic Performance Using Machine Learning Approaches

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50021066" target="_blank" >RIV/62690094:18450/23:50021066 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mecs-press.org/ijmecs/ijmecs-v15-n6/v15n6-1.html" target="_blank" >https://www.mecs-press.org/ijmecs/ijmecs-v15-n6/v15n6-1.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5815/ijmecs.2023.06.01" target="_blank" >10.5815/ijmecs.2023.06.01</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predicting College Students’ Placements Based on Academic Performance Using Machine Learning Approaches

  • Popis výsledku v původním jazyce

    Predicting College placements based on academic performance is critical to supporting educational institutions and students in making informed decisions about future career paths. The present research investigates the use of Machine Learning (ML) algorithms to predict college students&apos; placements using academic performance data. The study makes use of a dataset that includes a variety of academic markers, such as grades, test scores, and extracurricular activities, obtained from a varied sample of college students. To create predictive models, the study analyses numerous ML algorithms, including Logistic Regression, Gaussian Naive Bayes, Random Forest, Support Vector Machine, and K-Nearest Neighbour. The predictive models are evaluated using performance criteria such as accuracy, precision, recall, and F1-score. The most effective machine learning method for forecasting students&apos; placements based on academic achievement is identified through a comparative study. The findings show that Random Forest approaches have the potential to effectively forecast college student placements. The findings show that academic factors such as grades and test scores have a considerable impact on prediction accuracy. The findings of thi s study could be beneficial to educational institutions, students, and career counsellors. © 2023, Modern Education and Computer Science Press. All rights reserved.

  • Název v anglickém jazyce

    Predicting College Students’ Placements Based on Academic Performance Using Machine Learning Approaches

  • Popis výsledku anglicky

    Predicting College placements based on academic performance is critical to supporting educational institutions and students in making informed decisions about future career paths. The present research investigates the use of Machine Learning (ML) algorithms to predict college students&apos; placements using academic performance data. The study makes use of a dataset that includes a variety of academic markers, such as grades, test scores, and extracurricular activities, obtained from a varied sample of college students. To create predictive models, the study analyses numerous ML algorithms, including Logistic Regression, Gaussian Naive Bayes, Random Forest, Support Vector Machine, and K-Nearest Neighbour. The predictive models are evaluated using performance criteria such as accuracy, precision, recall, and F1-score. The most effective machine learning method for forecasting students&apos; placements based on academic achievement is identified through a comparative study. The findings show that Random Forest approaches have the potential to effectively forecast college student placements. The findings show that academic factors such as grades and test scores have a considerable impact on prediction accuracy. The findings of thi s study could be beneficial to educational institutions, students, and career counsellors. © 2023, Modern Education and Computer Science Press. All rights reserved.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Modern Education and Computer Science

  • ISSN

    2075-0161

  • e-ISSN

    2075-017X

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    HK - Hongkong

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85179328560