Predicting College Students’ Placements Based on Academic Performance Using Machine Learning Approaches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50021066" target="_blank" >RIV/62690094:18450/23:50021066 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mecs-press.org/ijmecs/ijmecs-v15-n6/v15n6-1.html" target="_blank" >https://www.mecs-press.org/ijmecs/ijmecs-v15-n6/v15n6-1.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5815/ijmecs.2023.06.01" target="_blank" >10.5815/ijmecs.2023.06.01</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting College Students’ Placements Based on Academic Performance Using Machine Learning Approaches
Popis výsledku v původním jazyce
Predicting College placements based on academic performance is critical to supporting educational institutions and students in making informed decisions about future career paths. The present research investigates the use of Machine Learning (ML) algorithms to predict college students' placements using academic performance data. The study makes use of a dataset that includes a variety of academic markers, such as grades, test scores, and extracurricular activities, obtained from a varied sample of college students. To create predictive models, the study analyses numerous ML algorithms, including Logistic Regression, Gaussian Naive Bayes, Random Forest, Support Vector Machine, and K-Nearest Neighbour. The predictive models are evaluated using performance criteria such as accuracy, precision, recall, and F1-score. The most effective machine learning method for forecasting students' placements based on academic achievement is identified through a comparative study. The findings show that Random Forest approaches have the potential to effectively forecast college student placements. The findings show that academic factors such as grades and test scores have a considerable impact on prediction accuracy. The findings of thi s study could be beneficial to educational institutions, students, and career counsellors. © 2023, Modern Education and Computer Science Press. All rights reserved.
Název v anglickém jazyce
Predicting College Students’ Placements Based on Academic Performance Using Machine Learning Approaches
Popis výsledku anglicky
Predicting College placements based on academic performance is critical to supporting educational institutions and students in making informed decisions about future career paths. The present research investigates the use of Machine Learning (ML) algorithms to predict college students' placements using academic performance data. The study makes use of a dataset that includes a variety of academic markers, such as grades, test scores, and extracurricular activities, obtained from a varied sample of college students. To create predictive models, the study analyses numerous ML algorithms, including Logistic Regression, Gaussian Naive Bayes, Random Forest, Support Vector Machine, and K-Nearest Neighbour. The predictive models are evaluated using performance criteria such as accuracy, precision, recall, and F1-score. The most effective machine learning method for forecasting students' placements based on academic achievement is identified through a comparative study. The findings show that Random Forest approaches have the potential to effectively forecast college student placements. The findings show that academic factors such as grades and test scores have a considerable impact on prediction accuracy. The findings of thi s study could be beneficial to educational institutions, students, and career counsellors. © 2023, Modern Education and Computer Science Press. All rights reserved.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Modern Education and Computer Science
ISSN
2075-0161
e-ISSN
2075-017X
Svazek periodika
15
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
HK - Hongkong
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85179328560