Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multiclass Prediction Model for Student Grade Prediction Using Machine Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018195" target="_blank" >RIV/62690094:18450/21:50018195 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/9468629" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9468629</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2021.3093563" target="_blank" >10.1109/ACCESS.2021.3093563</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multiclass Prediction Model for Student Grade Prediction Using Machine Learning

  • Popis výsledku v původním jazyce

    Today, predictive analytics applications became an urgent desire in higher educational institutions. Predictive analytics used advanced analytics that encompasses machine learning implementation to derive high-quality performance and meaningful information for all education levels. Mostly know that student grade is one of the key performance indicators that can help educators monitor their academic performance. During the past decade, researchers have proposed many variants of machine learning techniques in education domains. However, there are severe challenges in handling imbalanced datasets for enhancing the performance of predicting student grades. Therefore, this paper presents a comprehensive analysis of machine learning techniques to predict the final student grades in the first semester courses by improving the performance of predictive accuracy. Two modules will be highlighted in this paper. First, we compare the accuracy performance of six well-known machine learning techniques namely Decision Tree (J48), Support Vector Machine (SVM), Naive Bayes (NB), K-Nearest Neighbor (kNN), Logistic Regression (LR) and Random Forest (RF) using 1282 real student&apos;s course grade dataset. Second, we proposed a multiclass prediction model to reduce the overfitting and misclassification results caused by imbalanced multi-classification based on oversampling Synthetic Minority Oversampling Technique (SMOTE) with two features selection methods. The obtained results show that the proposed model integrates with RF give significant improvement with the highest f-measure of 99.5%. This proposed model indicates the comparable and promising results that can enhance the prediction performance model for imbalanced multi-classification for student grade prediction.

  • Název v anglickém jazyce

    Multiclass Prediction Model for Student Grade Prediction Using Machine Learning

  • Popis výsledku anglicky

    Today, predictive analytics applications became an urgent desire in higher educational institutions. Predictive analytics used advanced analytics that encompasses machine learning implementation to derive high-quality performance and meaningful information for all education levels. Mostly know that student grade is one of the key performance indicators that can help educators monitor their academic performance. During the past decade, researchers have proposed many variants of machine learning techniques in education domains. However, there are severe challenges in handling imbalanced datasets for enhancing the performance of predicting student grades. Therefore, this paper presents a comprehensive analysis of machine learning techniques to predict the final student grades in the first semester courses by improving the performance of predictive accuracy. Two modules will be highlighted in this paper. First, we compare the accuracy performance of six well-known machine learning techniques namely Decision Tree (J48), Support Vector Machine (SVM), Naive Bayes (NB), K-Nearest Neighbor (kNN), Logistic Regression (LR) and Random Forest (RF) using 1282 real student&apos;s course grade dataset. Second, we proposed a multiclass prediction model to reduce the overfitting and misclassification results caused by imbalanced multi-classification based on oversampling Synthetic Minority Oversampling Technique (SMOTE) with two features selection methods. The obtained results show that the proposed model integrates with RF give significant improvement with the highest f-measure of 99.5%. This proposed model indicates the comparable and promising results that can enhance the prediction performance model for imbalanced multi-classification for student grade prediction.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    Summer

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    95608-95621

  • Kód UT WoS článku

    000673703100001

  • EID výsledku v databázi Scopus

    2-s2.0-85110858538