Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Imbalanced Classification Methods for Student Grade Prediction: A Systematic Literature Review

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020056" target="_blank" >RIV/62690094:18450/23:50020056 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9965398/authors#authors" target="_blank" >https://ieeexplore.ieee.org/document/9965398/authors#authors</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2022.3225404" target="_blank" >10.1109/ACCESS.2022.3225404</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Imbalanced Classification Methods for Student Grade Prediction: A Systematic Literature Review

  • Popis výsledku v původním jazyce

    Student success is essential for improving the higher education system student outcome. One way to measure student success is by predicting students&apos; performance based on their prior academic grades. Concerning the significance of this area, various predictive models are widely developed and applied to help the institution identify students at risk of failure. However, building a high-accuracy predictive model is challenging due to the dataset&apos;s imbalanced nature, which caused biased results. Therefore, this study aims to review the existing research article by providing a state-of-the-art approach for handling imbalanced classification in higher education, including the best practices of dataset characteristics, methods, and comparative analysis of the proposed algorithms, focusing on student grade prediction context problems. The study also presents the most common balancing methods published from 2015 to 2021 and highlights their impact on resolving imbalanced classification in three approaches: data-level, algorithm-level, and hybrid-level. The survey results reveal that the data-level approach using SMOTE oversampling is broadly applied in determining imbalanced problems for student grade prediction. However, the application of hybrid and feature selection methods supporting the generalization of the predictive model to boost student grade prediction performance is generally lacking. Other than that, some of the strengths and weaknesses of the proposed methods are discussed and summarized for the direction of future research. The outcomes of this review will guide the professionals, practitioners, and academic researchers in dealing with imbalanced classification, mainly in the higher education field.

  • Název v anglickém jazyce

    Imbalanced Classification Methods for Student Grade Prediction: A Systematic Literature Review

  • Popis výsledku anglicky

    Student success is essential for improving the higher education system student outcome. One way to measure student success is by predicting students&apos; performance based on their prior academic grades. Concerning the significance of this area, various predictive models are widely developed and applied to help the institution identify students at risk of failure. However, building a high-accuracy predictive model is challenging due to the dataset&apos;s imbalanced nature, which caused biased results. Therefore, this study aims to review the existing research article by providing a state-of-the-art approach for handling imbalanced classification in higher education, including the best practices of dataset characteristics, methods, and comparative analysis of the proposed algorithms, focusing on student grade prediction context problems. The study also presents the most common balancing methods published from 2015 to 2021 and highlights their impact on resolving imbalanced classification in three approaches: data-level, algorithm-level, and hybrid-level. The survey results reveal that the data-level approach using SMOTE oversampling is broadly applied in determining imbalanced problems for student grade prediction. However, the application of hybrid and feature selection methods supporting the generalization of the predictive model to boost student grade prediction performance is generally lacking. Other than that, some of the strengths and weaknesses of the proposed methods are discussed and summarized for the direction of future research. The outcomes of this review will guide the professionals, practitioners, and academic researchers in dealing with imbalanced classification, mainly in the higher education field.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    January

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    20

  • Strana od-do

    1970-1989

  • Kód UT WoS článku

    000912476000001

  • EID výsledku v databázi Scopus

    2-s2.0-85144071000