Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On finding optimal polytrees

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F15%3A00087407" target="_blank" >RIV/00216224:14330/15:00087407 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.tcs.2015.05.012" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2015.05.012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2015.05.012" target="_blank" >10.1016/j.tcs.2015.05.012</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On finding optimal polytrees

  • Popis výsledku v původním jazyce

    We study the NP-hard problem of finding a directed acyclic graph (DAG) on a given set of nodes so as to maximize a given scoring function. The problem models the task of inferring a probabilistic network from data, which has been studied extensively in the fields of artificial intelligence and machine learning. Several variants of the problem, where the output DAG is constrained in several ways, are NP-hard as well, for example when the DAG is required to have bounded in-degree, or when it is required to be a polytree. Polynomial-time algorithms are known only for rare special cases, perhaps most notably for branchings, that is, polytrees in which the in-degree of every node is at most one. In this paper, we generalize this polynomial-time result to polytrees that can be turned into a branching by deleting a constant number of arcs. Our algorithm stems from a matroid intersection formulation.

  • Název v anglickém jazyce

    On finding optimal polytrees

  • Popis výsledku anglicky

    We study the NP-hard problem of finding a directed acyclic graph (DAG) on a given set of nodes so as to maximize a given scoring function. The problem models the task of inferring a probabilistic network from data, which has been studied extensively in the fields of artificial intelligence and machine learning. Several variants of the problem, where the output DAG is constrained in several ways, are NP-hard as well, for example when the DAG is required to have bounded in-degree, or when it is required to be a polytree. Polynomial-time algorithms are known only for rare special cases, perhaps most notably for branchings, that is, polytrees in which the in-degree of every node is at most one. In this paper, we generalize this polynomial-time result to polytrees that can be turned into a branching by deleting a constant number of arcs. Our algorithm stems from a matroid intersection formulation.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EE2.3.30.0009" target="_blank" >EE2.3.30.0009: Zaměstnáním čerstvých absolventů doktorského studia k vědecké excelenci</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

  • Svazek periodika

    592

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    49-58

  • Kód UT WoS článku

    000358624300005

  • EID výsledku v databázi Scopus