Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Parameterized Complexity of DAG Partitioning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F13%3A00209347" target="_blank" >RIV/68407700:21240/13:00209347 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-642-38233-8_5" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-38233-8_5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-38233-8_5" target="_blank" >10.1007/978-3-642-38233-8_5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Parameterized Complexity of DAG Partitioning

  • Popis výsledku v původním jazyce

    The goal of tracking the origin of short, distinctive phrases (memes) that propagate through the web in reaction to current events has been formalized as DAG Partitioning: given a directed acyclic graph, delete edges of minimum weight such that each resulting connected component of the underlying undirected graph contains only one sink. Motivated by NP-hardness and hardness of approximation results, we consider the parameterized complexity of this problem. We show that it can be solved in $O(2^k cdot n^2)$ time, where $k$ is the number of edge deletions, proving fixed-parameter tractability for parameter $k$. We then show that unless the Exponential Time Hypothesis (ETH) fails, this cannot be improved to $2^{o(k)} cdot n^{O(1)}$; further, DAG Partitioning does not have a polynomial kernel unless NP ? coNP/poly. Finally, given a tree decomposition of width $w$, we show how to solve DAG Partitioning in $2^{O(w^2)} cdot n$ time, improving a known algorithm for the parameter pathwidth.

  • Název v anglickém jazyce

    Parameterized Complexity of DAG Partitioning

  • Popis výsledku anglicky

    The goal of tracking the origin of short, distinctive phrases (memes) that propagate through the web in reaction to current events has been formalized as DAG Partitioning: given a directed acyclic graph, delete edges of minimum weight such that each resulting connected component of the underlying undirected graph contains only one sink. Motivated by NP-hardness and hardness of approximation results, we consider the parameterized complexity of this problem. We show that it can be solved in $O(2^k cdot n^2)$ time, where $k$ is the number of edge deletions, proving fixed-parameter tractability for parameter $k$. We then show that unless the Exponential Time Hypothesis (ETH) fails, this cannot be improved to $2^{o(k)} cdot n^{O(1)}$; further, DAG Partitioning does not have a polynomial kernel unless NP ? coNP/poly. Finally, given a tree decomposition of width $w$, we show how to solve DAG Partitioning in $2^{O(w^2)} cdot n$ time, improving a known algorithm for the parameter pathwidth.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  • ISBN

    978-3-642-38232-1

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    49-60

  • Název nakladatele

    Springer Science+Business Media

  • Místo vydání

    Berlin

  • Místo konání akce

    Barcelona

  • Datum konání akce

    22. 5. 2013

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku