Fixed-Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403063" target="_blank" >RIV/00216208:11320/19:10403063 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-aGNgvm9XI" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-aGNgvm9XI</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-018-0455-0" target="_blank" >10.1007/s00453-018-0455-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fixed-Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs
Popis výsledku v původním jazyce
We consider the k-Center problem and some generalizations. For k-Center a set of kcenter vertices needs to be found in a graph G with edge lengths, such that the distance from any vertex ofG to its nearest center is minimized. This problem naturally occurs in transportation networks, and therefore we model the inputs as graphs with bounded highway dimension, as proposed by Abraham etal. (SODA, pp 782-793, 2010). We show both approximation and fixed-parameter hardness results, and how to overcome them using fixed-parameter approximations, where the two paradigms are combined. In particular, we prove that for any epsilon>0 computing a (2-epsilon)-approximation is W[2]-hard for parameterk, and NP-hard for graphs with highway dimension O(log2n). The latter does not rule out fixed-parameter (2-epsilon)-approximations for the highway dimension parameterh, but implies that such an algorithm must have at least doubly exponential running time in h if it exists, unless ETH fails. On the positive side, we show how to get below the approximation factor of2 by combining the parameters k andh: we develop a fixed-parameter 3/2-approximation with running time 2O(khlogh)<bold>nO</bold>(1). Additionally we prove that, unless P=NP, our techniques cannot be used to compute fixed-parameter (2-epsilon)-approximations for only the parameter h. We also provide similar fixed-parameter approximations for the weightedk-Center and (k,F)-Partition problems, which generalize k-Center.
Název v anglickém jazyce
Fixed-Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs
Popis výsledku anglicky
We consider the k-Center problem and some generalizations. For k-Center a set of kcenter vertices needs to be found in a graph G with edge lengths, such that the distance from any vertex ofG to its nearest center is minimized. This problem naturally occurs in transportation networks, and therefore we model the inputs as graphs with bounded highway dimension, as proposed by Abraham etal. (SODA, pp 782-793, 2010). We show both approximation and fixed-parameter hardness results, and how to overcome them using fixed-parameter approximations, where the two paradigms are combined. In particular, we prove that for any epsilon>0 computing a (2-epsilon)-approximation is W[2]-hard for parameterk, and NP-hard for graphs with highway dimension O(log2n). The latter does not rule out fixed-parameter (2-epsilon)-approximations for the highway dimension parameterh, but implies that such an algorithm must have at least doubly exponential running time in h if it exists, unless ETH fails. On the positive side, we show how to get below the approximation factor of2 by combining the parameters k andh: we develop a fixed-parameter 3/2-approximation with running time 2O(khlogh)<bold>nO</bold>(1). Additionally we prove that, unless P=NP, our techniques cannot be used to compute fixed-parameter (2-epsilon)-approximations for only the parameter h. We also provide similar fixed-parameter approximations for the weightedk-Center and (k,F)-Partition problems, which generalize k-Center.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algorithmica
ISSN
0178-4617
e-ISSN
—
Svazek periodika
81
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
1031-1052
Kód UT WoS článku
000460105700005
EID výsledku v databázi Scopus
2-s2.0-85046896645