Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

English-French Document Alignment Based on Keywords and Statistical Translation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00088114" target="_blank" >RIV/00216224:14330/16:00088114 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    English-French Document Alignment Based on Keywords and Statistical Translation

  • Popis výsledku v původním jazyce

    In this paper we present our approach to the Bilingual Document Alignment Task (WMT16), where the main goal was to reach the best recall on extracting aligned pages within the provided data. Our approach consists of tree main parts: data preprocessing, keyword extraction and text pairs scoring based on keyword matching. For text preprocessing we use the TreeTagger pipeline that contains the Unitok tool (Michelfeit et al., 2014) for tokenization and the TreeTagger morphological analyzer (Schmid, 1994). After keywords extraction from the texts according TF-IDF scoring our system searches for comparable English-French pairs. Using a statistical dictionary created from a large English-French parallel corpus, the system is able to find comaparable documents. At the end this procedure is combined with the baseline algorithm and best one-to-one pairing is selected. The result reaches 91.6% recall on provided training data. After a deep error analysis (see section 5) the recall reached 97.4%.

  • Název v anglickém jazyce

    English-French Document Alignment Based on Keywords and Statistical Translation

  • Popis výsledku anglicky

    In this paper we present our approach to the Bilingual Document Alignment Task (WMT16), where the main goal was to reach the best recall on extracting aligned pages within the provided data. Our approach consists of tree main parts: data preprocessing, keyword extraction and text pairs scoring based on keyword matching. For text preprocessing we use the TreeTagger pipeline that contains the Unitok tool (Michelfeit et al., 2014) for tokenization and the TreeTagger morphological analyzer (Schmid, 1994). After keywords extraction from the texts according TF-IDF scoring our system searches for comparable English-French pairs. Using a statistical dictionary created from a large English-French parallel corpus, the system is able to find comaparable documents. At the end this procedure is combined with the baseline algorithm and best one-to-one pairing is selected. The result reaches 91.6% recall on provided training data. After a deep error analysis (see section 5) the recall reached 97.4%.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers

  • ISBN

    9781945626104

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    728-732

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Berlin

  • Místo konání akce

    Berlin

  • Datum konání akce

    1. 1. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku