English-French Document Alignment Based on Keywords and Statistical Translation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00088114" target="_blank" >RIV/00216224:14330/16:00088114 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
English-French Document Alignment Based on Keywords and Statistical Translation
Popis výsledku v původním jazyce
In this paper we present our approach to the Bilingual Document Alignment Task (WMT16), where the main goal was to reach the best recall on extracting aligned pages within the provided data. Our approach consists of tree main parts: data preprocessing, keyword extraction and text pairs scoring based on keyword matching. For text preprocessing we use the TreeTagger pipeline that contains the Unitok tool (Michelfeit et al., 2014) for tokenization and the TreeTagger morphological analyzer (Schmid, 1994). After keywords extraction from the texts according TF-IDF scoring our system searches for comparable English-French pairs. Using a statistical dictionary created from a large English-French parallel corpus, the system is able to find comaparable documents. At the end this procedure is combined with the baseline algorithm and best one-to-one pairing is selected. The result reaches 91.6% recall on provided training data. After a deep error analysis (see section 5) the recall reached 97.4%.
Název v anglickém jazyce
English-French Document Alignment Based on Keywords and Statistical Translation
Popis výsledku anglicky
In this paper we present our approach to the Bilingual Document Alignment Task (WMT16), where the main goal was to reach the best recall on extracting aligned pages within the provided data. Our approach consists of tree main parts: data preprocessing, keyword extraction and text pairs scoring based on keyword matching. For text preprocessing we use the TreeTagger pipeline that contains the Unitok tool (Michelfeit et al., 2014) for tokenization and the TreeTagger morphological analyzer (Schmid, 1994). After keywords extraction from the texts according TF-IDF scoring our system searches for comparable English-French pairs. Using a statistical dictionary created from a large English-French parallel corpus, the system is able to find comaparable documents. At the end this procedure is combined with the baseline algorithm and best one-to-one pairing is selected. The result reaches 91.6% recall on provided training data. After a deep error analysis (see section 5) the recall reached 97.4%.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the First Conference on Machine Translation, Volume 2: Shared Task Papers
ISBN
9781945626104
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
728-732
Název nakladatele
Association for Computational Linguistics
Místo vydání
Berlin
Místo konání akce
Berlin
Datum konání akce
1. 1. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—