Guildlines of Data Quality Issues for Data Integration in the Context of the TPC-DI Benchmark
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00096406" target="_blank" >RIV/00216224:14330/17:00096406 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5220/0006334301350144" target="_blank" >http://dx.doi.org/10.5220/0006334301350144</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0006334301350144" target="_blank" >10.5220/0006334301350144</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Guildlines of Data Quality Issues for Data Integration in the Context of the TPC-DI Benchmark
Popis výsledku v původním jazyce
Nowadays, many business intelligence or master data management initiatives are based on regular data integration, since data integration intends to extract and combine a variety of data sources, it is thus considered as a prerequisite for data analytics and management. More recently, TPC-DI is proposed as an industry benchmark for data integration. It is designed to benchmark the data integration and serve as a standardisation to evaluate the ETL performance. There are a variety of data quality problems such as multi-meaning attributes and inconsistent data schemas in source data, which will not only cause problems for the data integration process but also affect further data mining or data analytics. This paper has summarised typical data quality problems in the data integration and adapted the traditional data quality dimensions to classify those data quality problems. We found that data completeness, timeliness and consistency are critical for data quality management in data integration, and data consistency should be further defined in the pragmatic level. In order to prevent typical data quality problems and proactively manage data quality in ETL, we proposed a set of practical guidelines for researchers and practitioners to conduct data quality management in data integration.
Název v anglickém jazyce
Guildlines of Data Quality Issues for Data Integration in the Context of the TPC-DI Benchmark
Popis výsledku anglicky
Nowadays, many business intelligence or master data management initiatives are based on regular data integration, since data integration intends to extract and combine a variety of data sources, it is thus considered as a prerequisite for data analytics and management. More recently, TPC-DI is proposed as an industry benchmark for data integration. It is designed to benchmark the data integration and serve as a standardisation to evaluate the ETL performance. There are a variety of data quality problems such as multi-meaning attributes and inconsistent data schemas in source data, which will not only cause problems for the data integration process but also affect further data mining or data analytics. This paper has summarised typical data quality problems in the data integration and adapted the traditional data quality dimensions to classify those data quality problems. We found that data completeness, timeliness and consistency are critical for data quality management in data integration, and data consistency should be further defined in the pragmatic level. In order to prevent typical data quality problems and proactively manage data quality in ETL, we proposed a set of practical guidelines for researchers and practitioners to conduct data quality management in data integration.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 19th International Conference on Enterprise Information Systems
ISBN
9789897582479
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
135-144
Název nakladatele
SciTePress
Místo vydání
Porto, Portugal
Místo konání akce
Porto, Portugal
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
000697605900013