Data Quality Problems in TPC-DI Based Data Integration Processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00103077" target="_blank" >RIV/00216224:14330/18:00103077 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-93375-7_4" target="_blank" >http://dx.doi.org/10.1007/978-3-319-93375-7_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-93375-7_4" target="_blank" >10.1007/978-3-319-93375-7_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data Quality Problems in TPC-DI Based Data Integration Processes
Popis výsledku v původním jazyce
Many data driven organisations need to integrate data from multiple, distributed and heterogeneous resources for advanced data analysis. A data integration system is an essential component to collect data into a data warehouse or other data analytics systems. There are various alternatives of data integration systems which are created inhouse or provided by vendors. Hence, it is necessary for an organisation to compare and benchmark them when choosing a suitable one to meet its requirements. Recently, the TPC-DI is proposed as the first industrial benchmark for evaluating data integration systems. When using this benchmark, we find some typical data quality problems in the TPC-DI data source such as multi-meaning attributes and inconsistent data schemas, which could delay or even fail the data integration process. This paper explains processes of this benchmark and summarises typical data quality problems identified in the TPC-DI data source. Furthermore, in order to prevent data quality problems and proactively manage data quality, we propose a set of practical guidelines for researchers and practitioners to conduct data quality management when using the TPC-DI benchmark.
Název v anglickém jazyce
Data Quality Problems in TPC-DI Based Data Integration Processes
Popis výsledku anglicky
Many data driven organisations need to integrate data from multiple, distributed and heterogeneous resources for advanced data analysis. A data integration system is an essential component to collect data into a data warehouse or other data analytics systems. There are various alternatives of data integration systems which are created inhouse or provided by vendors. Hence, it is necessary for an organisation to compare and benchmark them when choosing a suitable one to meet its requirements. Recently, the TPC-DI is proposed as the first industrial benchmark for evaluating data integration systems. When using this benchmark, we find some typical data quality problems in the TPC-DI data source such as multi-meaning attributes and inconsistent data schemas, which could delay or even fail the data integration process. This paper explains processes of this benchmark and summarises typical data quality problems identified in the TPC-DI data source. Furthermore, in order to prevent data quality problems and proactively manage data quality, we propose a set of practical guidelines for researchers and practitioners to conduct data quality management when using the TPC-DI benchmark.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Enterprise Information Systems
ISBN
9783319933740
Počet stran výsledku
17
Strana od-do
57-73
Počet stran knihy
632
Název nakladatele
Springer Lecture Notes in Business Information Processing
Místo vydání
Germany
Kód UT WoS kapitoly
—