Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00099575" target="_blank" >RIV/00216224:14330/17:00099575 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11257-017-9193-2" target="_blank" >http://dx.doi.org/10.1007/s11257-017-9193-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11257-017-9193-2" target="_blank" >10.1007/s11257-017-9193-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques
Popis výsledku v původním jazyce
Learner modeling is a basis of personalized, adaptive learning. The research literature provides a wide range of modeling approaches, but it does not provide guidance for choosing a model suitable for a particular situation. We provide a systematic and up-to-date overview of current approaches to tracing learners' knowledge and skill across interaction with multiple items, focusing in particular on the widely used Bayesian knowledge tracing and logistic models. We discuss factors that influence the choice of a model and highlight the importance of the learner modeling context: models are used for different purposes and deal with different types of learning processes. We also consider methodological issues in the evaluation of learner models and their relation to the modeling context. Overall, the overview provides basic guidelines for both researchers and practitioners and identifies areas that require further clarification in future research.
Název v anglickém jazyce
Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques
Popis výsledku anglicky
Learner modeling is a basis of personalized, adaptive learning. The research literature provides a wide range of modeling approaches, but it does not provide guidance for choosing a model suitable for a particular situation. We provide a systematic and up-to-date overview of current approaches to tracing learners' knowledge and skill across interaction with multiple items, focusing in particular on the widely used Bayesian knowledge tracing and logistic models. We discuss factors that influence the choice of a model and highlight the importance of the learner modeling context: models are used for different purposes and deal with different types of learning processes. We also consider methodological issues in the evaluation of learner models and their relation to the modeling context. Overall, the overview provides basic guidelines for both researchers and practitioners and identifies areas that require further clarification in future research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
User Modeling and User-Adapted Interaction
ISSN
0924-1868
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
3-5
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
38
Strana od-do
313-350
Kód UT WoS článku
000414997500001
EID výsledku v databázi Scopus
—