Solving Problems on Graphs of High Rank-Width
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00106821" target="_blank" >RIV/00216224:14330/18:00106821 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00453-017-0290-8" target="_blank" >http://dx.doi.org/10.1007/s00453-017-0290-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-017-0290-8" target="_blank" >10.1007/s00453-017-0290-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solving Problems on Graphs of High Rank-Width
Popis výsledku v původním jazyce
A modulator in a graph is a vertex set whose deletion places the considered graph into some specified graph class. The cardinality of a modulator to various graph classes has long been used as a structural parameter which can be exploited to obtain fixed-parameter algorithms for a range of hard problems. Here we investigate what happens when a graph contains a modulator which is large but “well-structured” (in the sense of having bounded rank-width). Can such modulators still be exploited to obtain efficient algorithms? And is it even possible to find such modulators efficiently? We first show that the parameters derived from such well-structured modulators are more powerful for fixed-parameter algorithms than the cardinality of modulators and rank-width itself. Then, we develop a fixed-parameter algorithm for finding such well-structured modulators to every graph class which can be characterized by a finite set of forbidden induced subgraphs. We proceed by showing how well-structured modulators can be used to obtain efficient parameterized algorithms for Minimum Vertex Cover and Maximum Clique. Finally, we use the concept of well-structured modulators to develop an algorithmic meta-theorem for deciding problems expressible in monadic second order logic, and prove that this result is tight in the sense that it cannot be generalized to LinEMSO problems.
Název v anglickém jazyce
Solving Problems on Graphs of High Rank-Width
Popis výsledku anglicky
A modulator in a graph is a vertex set whose deletion places the considered graph into some specified graph class. The cardinality of a modulator to various graph classes has long been used as a structural parameter which can be exploited to obtain fixed-parameter algorithms for a range of hard problems. Here we investigate what happens when a graph contains a modulator which is large but “well-structured” (in the sense of having bounded rank-width). Can such modulators still be exploited to obtain efficient algorithms? And is it even possible to find such modulators efficiently? We first show that the parameters derived from such well-structured modulators are more powerful for fixed-parameter algorithms than the cardinality of modulators and rank-width itself. Then, we develop a fixed-parameter algorithm for finding such well-structured modulators to every graph class which can be characterized by a finite set of forbidden induced subgraphs. We proceed by showing how well-structured modulators can be used to obtain efficient parameterized algorithms for Minimum Vertex Cover and Maximum Clique. Finally, we use the concept of well-structured modulators to develop an algorithmic meta-theorem for deciding problems expressible in monadic second order logic, and prove that this result is tight in the sense that it cannot be generalized to LinEMSO problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algorithmica
ISSN
0178-4617
e-ISSN
1432-0541
Svazek periodika
80
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
30
Strana od-do
742-771
Kód UT WoS článku
000424203700014
EID výsledku v databázi Scopus
2-s2.0-85012292665