The Crossing Number of the Cone of a Graph
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00106879" target="_blank" >RIV/00216224:14330/18:00106879 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1137/17M1115320" target="_blank" >http://dx.doi.org/10.1137/17M1115320</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/17M1115320" target="_blank" >10.1137/17M1115320</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Crossing Number of the Cone of a Graph
Popis výsledku v původním jazyce
Motivated by a problem asked by Richter and by the long standing Harary{Hill conjecture, we study the relation between the crossing number of a graph G and the crossing number of its cone CG, the graph obtained from G by adding a new vertex adjacent to all the vertices in G. Simple examples show that the di ff erence cr (CG) - cr (G) can be arbitrarily large for any fi xed k = cr (G). In this work, we are interested in fi nding the smallest possible di ff erence; that is, for each nonnegative integer k, fi nd the smallest f (k) for which there exists a graph with crossing number at least k and cone with crossing number f (k). For small values of k, we give exact values of f (k) when the problem is restricted to simple graphs and show that f (k) = k + circle minus(root k) when multiple edges are allowed.
Název v anglickém jazyce
The Crossing Number of the Cone of a Graph
Popis výsledku anglicky
Motivated by a problem asked by Richter and by the long standing Harary{Hill conjecture, we study the relation between the crossing number of a graph G and the crossing number of its cone CG, the graph obtained from G by adding a new vertex adjacent to all the vertices in G. Simple examples show that the di ff erence cr (CG) - cr (G) can be arbitrarily large for any fi xed k = cr (G). In this work, we are interested in fi nding the smallest possible di ff erence; that is, for each nonnegative integer k, fi nd the smallest f (k) for which there exists a graph with crossing number at least k and cone with crossing number f (k). For small values of k, we give exact values of f (k) when the problem is restricted to simple graphs and show that f (k) = k + circle minus(root k) when multiple edges are allowed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
2080-2093
Kód UT WoS článku
000450810500026
EID výsledku v databázi Scopus
2-s2.0-85053860050