Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Siamese Convolutional Neural Networks for Recognizing Partial Entailment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00115010" target="_blank" >RIV/00216224:14330/18:00115010 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://daz2018.fit.vutbr.cz/DaZ_WIKT_2018_Sbornik.pdf" target="_blank" >http://daz2018.fit.vutbr.cz/DaZ_WIKT_2018_Sbornik.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Siamese Convolutional Neural Networks for Recognizing Partial Entailment

  • Popis výsledku v původním jazyce

    Recognizing textual entailment (RTE), i. e., a decision problem whether a sentence (called hypothesis) can be inferred from a given text, became a well established and widely studied task. As a consequence of the traditional binary (or ternary) class formulation, it is not possible to express the fact that a fragment of the hypothesis is entailed by the text, even though the “whole” entailment of the hypothesis from the text does not hold. The notions of partial textual entailment – and faceted entailment in particular – address this problem. In this paper, we introduce a siamese CNN architecture with a static attention mechanism together with a sentence compression and provide an evaluation over modified SemEval 2013 Task 8 dataset.

  • Název v anglickém jazyce

    Siamese Convolutional Neural Networks for Recognizing Partial Entailment

  • Popis výsledku anglicky

    Recognizing textual entailment (RTE), i. e., a decision problem whether a sentence (called hypothesis) can be inferred from a given text, became a well established and widely studied task. As a consequence of the traditional binary (or ternary) class formulation, it is not possible to express the fact that a fragment of the hypothesis is entailed by the text, even though the “whole” entailment of the hypothesis from the text does not hold. The notions of partial textual entailment – and faceted entailment in particular – address this problem. In this paper, we introduce a siamese CNN architecture with a static attention mechanism together with a sentence compression and provide an evaluation over modified SemEval 2013 Task 8 dataset.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Siamese Convolutional Neural Networks for Recognizing Partial Entailment

  • ISBN

    9788021456792

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    237-242

  • Název nakladatele

    Vysoké učení technické v Brně

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    1. 1. 2018

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku