Techniques for Complex Analysis of Contemporary Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00114809" target="_blank" >RIV/00216224:14330/20:00114809 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3415048.3416097" target="_blank" >https://dl.acm.org/doi/10.1145/3415048.3416097</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3415048.3416097" target="_blank" >10.1145/3415048.3416097</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Techniques for Complex Analysis of Contemporary Data
Popis výsledku v původním jazyce
Contemporary data objects are typically complex, semi-structured, or unstructured at all. Besides, objects are also related to form a network. In such a situation, data analysis requires not only the traditional attribute-based access but also access based on similarity as well as data mining operations. Though tools for such operations do exist, they usually specialise in operation and are available for specialized data structures supported by specific computer system environments. In contrary, advance analyses are obtained by application of several elementary access operations which in turn requires expert knowledge in multiple areas. In this paper, we propose a unification platform for various data analytical operators specified as a general-purpose analytical system ADAMiSS. An extensible data-mining and similarity-based set of operators over a common versatile data structure allow the recursive application of heterogeneous operations, thus allowing the definition of complex analytical processes, necessary to solve the contemporary analytical tasks. As a proof-of-concept, we present results that were obtained by our prototype implementation on two real-world data collections: the Twitter Higg's boson and the Kosarak datasets.
Název v anglickém jazyce
Techniques for Complex Analysis of Contemporary Data
Popis výsledku anglicky
Contemporary data objects are typically complex, semi-structured, or unstructured at all. Besides, objects are also related to form a network. In such a situation, data analysis requires not only the traditional attribute-based access but also access based on similarity as well as data mining operations. Though tools for such operations do exist, they usually specialise in operation and are available for specialized data structures supported by specific computer system environments. In contrary, advance analyses are obtained by application of several elementary access operations which in turn requires expert knowledge in multiple areas. In this paper, we propose a unification platform for various data analytical operators specified as a general-purpose analytical system ADAMiSS. An extensible data-mining and similarity-based set of operators over a common versatile data structure allow the recursive application of heterogeneous operations, thus allowing the definition of complex analytical processes, necessary to solve the contemporary analytical tasks. As a proof-of-concept, we present results that were obtained by our prototype implementation on two real-world data collections: the Twitter Higg's boson and the Kosarak datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20172020096" target="_blank" >VI20172020096: Komplexní analýza a vizualizace heterogenních dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems
ISBN
9781450387699
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
Association for Computing Machinery
Místo vydání
New York, NY, USA,
Místo konání akce
Athens, Greece
Datum konání akce
1. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—