Beyond binary correctness: Classification of students’ answers in learning systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00116670" target="_blank" >RIV/00216224:14330/20:00116670 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11257-020-09265-5" target="_blank" >https://doi.org/10.1007/s11257-020-09265-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11257-020-09265-5" target="_blank" >10.1007/s11257-020-09265-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Beyond binary correctness: Classification of students’ answers in learning systems
Popis výsledku v původním jazyce
Adaptive learning systems collect data on student performance and use them to personalize system behavior. Most current personalization techniques focus on the correctness of answers. Although the correctness of answers is the most straightforward source of information about student state, research suggests that additional data are also useful, e.g., response times, hints usage, or specific values of incorrect answers. However, these sources of data are not easy to utilize and are often used in an ad hoc fashion. We propose to use answer classification as an interface between raw data about student performance and algorithms for adaptive behavior. Specifically, we propose a classification of student answers into six categories: three classes of correct answers and three classes of incorrect answers. The proposed classification is broadly applicable and makes the use of additional interaction data much more feasible. We support the proposal by analysis of extensive data from adaptive learning systems.
Název v anglickém jazyce
Beyond binary correctness: Classification of students’ answers in learning systems
Popis výsledku anglicky
Adaptive learning systems collect data on student performance and use them to personalize system behavior. Most current personalization techniques focus on the correctness of answers. Although the correctness of answers is the most straightforward source of information about student state, research suggests that additional data are also useful, e.g., response times, hints usage, or specific values of incorrect answers. However, these sources of data are not easy to utilize and are often used in an ad hoc fashion. We propose to use answer classification as an interface between raw data about student performance and algorithms for adaptive behavior. Specifically, we propose a classification of student answers into six categories: three classes of correct answers and three classes of incorrect answers. The proposed classification is broadly applicable and makes the use of additional interaction data much more feasible. We support the proposal by analysis of extensive data from adaptive learning systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
User Modeling and User-Adapted Interaction
ISSN
0924-1868
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
27
Strana od-do
867-893
Kód UT WoS článku
000530578600001
EID výsledku v databázi Scopus
2-s2.0-85085069556