Reinforcing Cybersecurity Hands-on Training With Adaptive Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00120055" target="_blank" >RIV/00216224:14330/21:00120055 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/FIE49875.2021.9637252" target="_blank" >http://dx.doi.org/10.1109/FIE49875.2021.9637252</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/FIE49875.2021.9637252" target="_blank" >10.1109/FIE49875.2021.9637252</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reinforcing Cybersecurity Hands-on Training With Adaptive Learning
Popis výsledku v původním jazyce
This Research To Practice Full Paper presents how learning experience influences students' capability to learn and their motivation for further learning. Although each student is different, standard instruction methods do not adapt to individual students. Adaptive learning reverses this practice and attempts to improve the student experience. While adaptive learning is well-established in programming, it is rarely used in cybersecurity education. This paper is one of the first works investigating adaptive learning in cybersecurity training. First, we analyze the performance of 95 students in 12 training sessions to understand the limitations of the current training practice. Less than half of the students (45 out of 95) completed the training without displaying any solution, and only in two sessions, all students completed all phases. Then, we simulate how students would proceed in one of the past training sessions if it would offer more paths of various difficulty. Based on this simulation, we propose a novel tutor model for adaptive training, which considers students' proficiency before and during an ongoing training session. The proficiency is assessed using a pre-training questionnaire and various in-training metrics. Finally, we conduct a case study with 24 students and new training using the proposed tutor model and adaptive training format. The results show that the adaptive training does not overwhelm students as the original static training format. In particular, adaptive training enables students to enter several alternative training phases with lower difficulty than the phases in the original training. The proposed adaptive format is not restricted to particular training used in our case study. Therefore, it can be applied to practicing any cybersecurity topic or even in other related computing fields, such as networking or operating systems. Our study indicates that adaptive learning is a promising approach for improving the student experience in cybersecurity education. We also highlight diverse implications for educational practice that improve students' experience.
Název v anglickém jazyce
Reinforcing Cybersecurity Hands-on Training With Adaptive Learning
Popis výsledku anglicky
This Research To Practice Full Paper presents how learning experience influences students' capability to learn and their motivation for further learning. Although each student is different, standard instruction methods do not adapt to individual students. Adaptive learning reverses this practice and attempts to improve the student experience. While adaptive learning is well-established in programming, it is rarely used in cybersecurity education. This paper is one of the first works investigating adaptive learning in cybersecurity training. First, we analyze the performance of 95 students in 12 training sessions to understand the limitations of the current training practice. Less than half of the students (45 out of 95) completed the training without displaying any solution, and only in two sessions, all students completed all phases. Then, we simulate how students would proceed in one of the past training sessions if it would offer more paths of various difficulty. Based on this simulation, we propose a novel tutor model for adaptive training, which considers students' proficiency before and during an ongoing training session. The proficiency is assessed using a pre-training questionnaire and various in-training metrics. Finally, we conduct a case study with 24 students and new training using the proposed tutor model and adaptive training format. The results show that the adaptive training does not overwhelm students as the original static training format. In particular, adaptive training enables students to enter several alternative training phases with lower difficulty than the phases in the original training. The proposed adaptive format is not restricted to particular training used in our case study. Therefore, it can be applied to practicing any cybersecurity topic or even in other related computing fields, such as networking or operating systems. Our study indicates that adaptive learning is a promising approach for improving the student experience in cybersecurity education. We also highlight diverse implications for educational practice that improve students' experience.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20202022158" target="_blank" >VI20202022158: Výzkum nových technologií pro zvýšení schopností odborníků na kyberbezpečnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE Frontiers in Education Conference (FIE)
ISBN
9781665438513
ISSN
1539-4565
e-ISSN
2377-634X
Počet stran výsledku
9
Strana od-do
1-9
Název nakladatele
IEEE
Místo vydání
New York, NY, USA
Místo konání akce
Lincoln, Nebraska, USA
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000821947700141